12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210 |
- #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
- #pragma warning disable
- using System;
- using System.Text;
- using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities;
- namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Math.EC
- {
- internal class LongArray
- {
- //private static long DEInterleave_MASK = 0x5555555555555555L;
- /*
- * This expands 8 bit indices into 16 bit contents (high bit 14), by inserting 0s between bits.
- * In a binary field, this operation is the same as squaring an 8 bit number.
- */
- private static readonly ushort[] INTERLEAVE2_TABLE = new ushort[]
- {
- 0x0000, 0x0001, 0x0004, 0x0005, 0x0010, 0x0011, 0x0014, 0x0015,
- 0x0040, 0x0041, 0x0044, 0x0045, 0x0050, 0x0051, 0x0054, 0x0055,
- 0x0100, 0x0101, 0x0104, 0x0105, 0x0110, 0x0111, 0x0114, 0x0115,
- 0x0140, 0x0141, 0x0144, 0x0145, 0x0150, 0x0151, 0x0154, 0x0155,
- 0x0400, 0x0401, 0x0404, 0x0405, 0x0410, 0x0411, 0x0414, 0x0415,
- 0x0440, 0x0441, 0x0444, 0x0445, 0x0450, 0x0451, 0x0454, 0x0455,
- 0x0500, 0x0501, 0x0504, 0x0505, 0x0510, 0x0511, 0x0514, 0x0515,
- 0x0540, 0x0541, 0x0544, 0x0545, 0x0550, 0x0551, 0x0554, 0x0555,
- 0x1000, 0x1001, 0x1004, 0x1005, 0x1010, 0x1011, 0x1014, 0x1015,
- 0x1040, 0x1041, 0x1044, 0x1045, 0x1050, 0x1051, 0x1054, 0x1055,
- 0x1100, 0x1101, 0x1104, 0x1105, 0x1110, 0x1111, 0x1114, 0x1115,
- 0x1140, 0x1141, 0x1144, 0x1145, 0x1150, 0x1151, 0x1154, 0x1155,
- 0x1400, 0x1401, 0x1404, 0x1405, 0x1410, 0x1411, 0x1414, 0x1415,
- 0x1440, 0x1441, 0x1444, 0x1445, 0x1450, 0x1451, 0x1454, 0x1455,
- 0x1500, 0x1501, 0x1504, 0x1505, 0x1510, 0x1511, 0x1514, 0x1515,
- 0x1540, 0x1541, 0x1544, 0x1545, 0x1550, 0x1551, 0x1554, 0x1555,
- 0x4000, 0x4001, 0x4004, 0x4005, 0x4010, 0x4011, 0x4014, 0x4015,
- 0x4040, 0x4041, 0x4044, 0x4045, 0x4050, 0x4051, 0x4054, 0x4055,
- 0x4100, 0x4101, 0x4104, 0x4105, 0x4110, 0x4111, 0x4114, 0x4115,
- 0x4140, 0x4141, 0x4144, 0x4145, 0x4150, 0x4151, 0x4154, 0x4155,
- 0x4400, 0x4401, 0x4404, 0x4405, 0x4410, 0x4411, 0x4414, 0x4415,
- 0x4440, 0x4441, 0x4444, 0x4445, 0x4450, 0x4451, 0x4454, 0x4455,
- 0x4500, 0x4501, 0x4504, 0x4505, 0x4510, 0x4511, 0x4514, 0x4515,
- 0x4540, 0x4541, 0x4544, 0x4545, 0x4550, 0x4551, 0x4554, 0x4555,
- 0x5000, 0x5001, 0x5004, 0x5005, 0x5010, 0x5011, 0x5014, 0x5015,
- 0x5040, 0x5041, 0x5044, 0x5045, 0x5050, 0x5051, 0x5054, 0x5055,
- 0x5100, 0x5101, 0x5104, 0x5105, 0x5110, 0x5111, 0x5114, 0x5115,
- 0x5140, 0x5141, 0x5144, 0x5145, 0x5150, 0x5151, 0x5154, 0x5155,
- 0x5400, 0x5401, 0x5404, 0x5405, 0x5410, 0x5411, 0x5414, 0x5415,
- 0x5440, 0x5441, 0x5444, 0x5445, 0x5450, 0x5451, 0x5454, 0x5455,
- 0x5500, 0x5501, 0x5504, 0x5505, 0x5510, 0x5511, 0x5514, 0x5515,
- 0x5540, 0x5541, 0x5544, 0x5545, 0x5550, 0x5551, 0x5554, 0x5555
- };
- /*
- * This expands 7 bit indices into 21 bit contents (high bit 18), by inserting 0s between bits.
- */
- private static readonly int[] INTERLEAVE3_TABLE = new int[]
- {
- 0x00000, 0x00001, 0x00008, 0x00009, 0x00040, 0x00041, 0x00048, 0x00049,
- 0x00200, 0x00201, 0x00208, 0x00209, 0x00240, 0x00241, 0x00248, 0x00249,
- 0x01000, 0x01001, 0x01008, 0x01009, 0x01040, 0x01041, 0x01048, 0x01049,
- 0x01200, 0x01201, 0x01208, 0x01209, 0x01240, 0x01241, 0x01248, 0x01249,
- 0x08000, 0x08001, 0x08008, 0x08009, 0x08040, 0x08041, 0x08048, 0x08049,
- 0x08200, 0x08201, 0x08208, 0x08209, 0x08240, 0x08241, 0x08248, 0x08249,
- 0x09000, 0x09001, 0x09008, 0x09009, 0x09040, 0x09041, 0x09048, 0x09049,
- 0x09200, 0x09201, 0x09208, 0x09209, 0x09240, 0x09241, 0x09248, 0x09249,
- 0x40000, 0x40001, 0x40008, 0x40009, 0x40040, 0x40041, 0x40048, 0x40049,
- 0x40200, 0x40201, 0x40208, 0x40209, 0x40240, 0x40241, 0x40248, 0x40249,
- 0x41000, 0x41001, 0x41008, 0x41009, 0x41040, 0x41041, 0x41048, 0x41049,
- 0x41200, 0x41201, 0x41208, 0x41209, 0x41240, 0x41241, 0x41248, 0x41249,
- 0x48000, 0x48001, 0x48008, 0x48009, 0x48040, 0x48041, 0x48048, 0x48049,
- 0x48200, 0x48201, 0x48208, 0x48209, 0x48240, 0x48241, 0x48248, 0x48249,
- 0x49000, 0x49001, 0x49008, 0x49009, 0x49040, 0x49041, 0x49048, 0x49049,
- 0x49200, 0x49201, 0x49208, 0x49209, 0x49240, 0x49241, 0x49248, 0x49249
- };
- /*
- * This expands 8 bit indices into 32 bit contents (high bit 28), by inserting 0s between bits.
- */
- private static readonly int[] INTERLEAVE4_TABLE = new int[]
- {
- 0x00000000, 0x00000001, 0x00000010, 0x00000011, 0x00000100, 0x00000101, 0x00000110, 0x00000111,
- 0x00001000, 0x00001001, 0x00001010, 0x00001011, 0x00001100, 0x00001101, 0x00001110, 0x00001111,
- 0x00010000, 0x00010001, 0x00010010, 0x00010011, 0x00010100, 0x00010101, 0x00010110, 0x00010111,
- 0x00011000, 0x00011001, 0x00011010, 0x00011011, 0x00011100, 0x00011101, 0x00011110, 0x00011111,
- 0x00100000, 0x00100001, 0x00100010, 0x00100011, 0x00100100, 0x00100101, 0x00100110, 0x00100111,
- 0x00101000, 0x00101001, 0x00101010, 0x00101011, 0x00101100, 0x00101101, 0x00101110, 0x00101111,
- 0x00110000, 0x00110001, 0x00110010, 0x00110011, 0x00110100, 0x00110101, 0x00110110, 0x00110111,
- 0x00111000, 0x00111001, 0x00111010, 0x00111011, 0x00111100, 0x00111101, 0x00111110, 0x00111111,
- 0x01000000, 0x01000001, 0x01000010, 0x01000011, 0x01000100, 0x01000101, 0x01000110, 0x01000111,
- 0x01001000, 0x01001001, 0x01001010, 0x01001011, 0x01001100, 0x01001101, 0x01001110, 0x01001111,
- 0x01010000, 0x01010001, 0x01010010, 0x01010011, 0x01010100, 0x01010101, 0x01010110, 0x01010111,
- 0x01011000, 0x01011001, 0x01011010, 0x01011011, 0x01011100, 0x01011101, 0x01011110, 0x01011111,
- 0x01100000, 0x01100001, 0x01100010, 0x01100011, 0x01100100, 0x01100101, 0x01100110, 0x01100111,
- 0x01101000, 0x01101001, 0x01101010, 0x01101011, 0x01101100, 0x01101101, 0x01101110, 0x01101111,
- 0x01110000, 0x01110001, 0x01110010, 0x01110011, 0x01110100, 0x01110101, 0x01110110, 0x01110111,
- 0x01111000, 0x01111001, 0x01111010, 0x01111011, 0x01111100, 0x01111101, 0x01111110, 0x01111111,
- 0x10000000, 0x10000001, 0x10000010, 0x10000011, 0x10000100, 0x10000101, 0x10000110, 0x10000111,
- 0x10001000, 0x10001001, 0x10001010, 0x10001011, 0x10001100, 0x10001101, 0x10001110, 0x10001111,
- 0x10010000, 0x10010001, 0x10010010, 0x10010011, 0x10010100, 0x10010101, 0x10010110, 0x10010111,
- 0x10011000, 0x10011001, 0x10011010, 0x10011011, 0x10011100, 0x10011101, 0x10011110, 0x10011111,
- 0x10100000, 0x10100001, 0x10100010, 0x10100011, 0x10100100, 0x10100101, 0x10100110, 0x10100111,
- 0x10101000, 0x10101001, 0x10101010, 0x10101011, 0x10101100, 0x10101101, 0x10101110, 0x10101111,
- 0x10110000, 0x10110001, 0x10110010, 0x10110011, 0x10110100, 0x10110101, 0x10110110, 0x10110111,
- 0x10111000, 0x10111001, 0x10111010, 0x10111011, 0x10111100, 0x10111101, 0x10111110, 0x10111111,
- 0x11000000, 0x11000001, 0x11000010, 0x11000011, 0x11000100, 0x11000101, 0x11000110, 0x11000111,
- 0x11001000, 0x11001001, 0x11001010, 0x11001011, 0x11001100, 0x11001101, 0x11001110, 0x11001111,
- 0x11010000, 0x11010001, 0x11010010, 0x11010011, 0x11010100, 0x11010101, 0x11010110, 0x11010111,
- 0x11011000, 0x11011001, 0x11011010, 0x11011011, 0x11011100, 0x11011101, 0x11011110, 0x11011111,
- 0x11100000, 0x11100001, 0x11100010, 0x11100011, 0x11100100, 0x11100101, 0x11100110, 0x11100111,
- 0x11101000, 0x11101001, 0x11101010, 0x11101011, 0x11101100, 0x11101101, 0x11101110, 0x11101111,
- 0x11110000, 0x11110001, 0x11110010, 0x11110011, 0x11110100, 0x11110101, 0x11110110, 0x11110111,
- 0x11111000, 0x11111001, 0x11111010, 0x11111011, 0x11111100, 0x11111101, 0x11111110, 0x11111111
- };
- /*
- * This expands 7 bit indices into 35 bit contents (high bit 30), by inserting 0s between bits.
- */
- private static readonly int[] INTERLEAVE5_TABLE = new int[] {
- 0x00000000, 0x00000001, 0x00000020, 0x00000021, 0x00000400, 0x00000401, 0x00000420, 0x00000421,
- 0x00008000, 0x00008001, 0x00008020, 0x00008021, 0x00008400, 0x00008401, 0x00008420, 0x00008421,
- 0x00100000, 0x00100001, 0x00100020, 0x00100021, 0x00100400, 0x00100401, 0x00100420, 0x00100421,
- 0x00108000, 0x00108001, 0x00108020, 0x00108021, 0x00108400, 0x00108401, 0x00108420, 0x00108421,
- 0x02000000, 0x02000001, 0x02000020, 0x02000021, 0x02000400, 0x02000401, 0x02000420, 0x02000421,
- 0x02008000, 0x02008001, 0x02008020, 0x02008021, 0x02008400, 0x02008401, 0x02008420, 0x02008421,
- 0x02100000, 0x02100001, 0x02100020, 0x02100021, 0x02100400, 0x02100401, 0x02100420, 0x02100421,
- 0x02108000, 0x02108001, 0x02108020, 0x02108021, 0x02108400, 0x02108401, 0x02108420, 0x02108421,
- 0x40000000, 0x40000001, 0x40000020, 0x40000021, 0x40000400, 0x40000401, 0x40000420, 0x40000421,
- 0x40008000, 0x40008001, 0x40008020, 0x40008021, 0x40008400, 0x40008401, 0x40008420, 0x40008421,
- 0x40100000, 0x40100001, 0x40100020, 0x40100021, 0x40100400, 0x40100401, 0x40100420, 0x40100421,
- 0x40108000, 0x40108001, 0x40108020, 0x40108021, 0x40108400, 0x40108401, 0x40108420, 0x40108421,
- 0x42000000, 0x42000001, 0x42000020, 0x42000021, 0x42000400, 0x42000401, 0x42000420, 0x42000421,
- 0x42008000, 0x42008001, 0x42008020, 0x42008021, 0x42008400, 0x42008401, 0x42008420, 0x42008421,
- 0x42100000, 0x42100001, 0x42100020, 0x42100021, 0x42100400, 0x42100401, 0x42100420, 0x42100421,
- 0x42108000, 0x42108001, 0x42108020, 0x42108021, 0x42108400, 0x42108401, 0x42108420, 0x42108421
- };
- /*
- * This expands 9 bit indices into 63 bit (long) contents (high bit 56), by inserting 0s between bits.
- */
- private static readonly long[] INTERLEAVE7_TABLE = new long[]
- {
- 0x0000000000000000L, 0x0000000000000001L, 0x0000000000000080L, 0x0000000000000081L,
- 0x0000000000004000L, 0x0000000000004001L, 0x0000000000004080L, 0x0000000000004081L,
- 0x0000000000200000L, 0x0000000000200001L, 0x0000000000200080L, 0x0000000000200081L,
- 0x0000000000204000L, 0x0000000000204001L, 0x0000000000204080L, 0x0000000000204081L,
- 0x0000000010000000L, 0x0000000010000001L, 0x0000000010000080L, 0x0000000010000081L,
- 0x0000000010004000L, 0x0000000010004001L, 0x0000000010004080L, 0x0000000010004081L,
- 0x0000000010200000L, 0x0000000010200001L, 0x0000000010200080L, 0x0000000010200081L,
- 0x0000000010204000L, 0x0000000010204001L, 0x0000000010204080L, 0x0000000010204081L,
- 0x0000000800000000L, 0x0000000800000001L, 0x0000000800000080L, 0x0000000800000081L,
- 0x0000000800004000L, 0x0000000800004001L, 0x0000000800004080L, 0x0000000800004081L,
- 0x0000000800200000L, 0x0000000800200001L, 0x0000000800200080L, 0x0000000800200081L,
- 0x0000000800204000L, 0x0000000800204001L, 0x0000000800204080L, 0x0000000800204081L,
- 0x0000000810000000L, 0x0000000810000001L, 0x0000000810000080L, 0x0000000810000081L,
- 0x0000000810004000L, 0x0000000810004001L, 0x0000000810004080L, 0x0000000810004081L,
- 0x0000000810200000L, 0x0000000810200001L, 0x0000000810200080L, 0x0000000810200081L,
- 0x0000000810204000L, 0x0000000810204001L, 0x0000000810204080L, 0x0000000810204081L,
- 0x0000040000000000L, 0x0000040000000001L, 0x0000040000000080L, 0x0000040000000081L,
- 0x0000040000004000L, 0x0000040000004001L, 0x0000040000004080L, 0x0000040000004081L,
- 0x0000040000200000L, 0x0000040000200001L, 0x0000040000200080L, 0x0000040000200081L,
- 0x0000040000204000L, 0x0000040000204001L, 0x0000040000204080L, 0x0000040000204081L,
- 0x0000040010000000L, 0x0000040010000001L, 0x0000040010000080L, 0x0000040010000081L,
- 0x0000040010004000L, 0x0000040010004001L, 0x0000040010004080L, 0x0000040010004081L,
- 0x0000040010200000L, 0x0000040010200001L, 0x0000040010200080L, 0x0000040010200081L,
- 0x0000040010204000L, 0x0000040010204001L, 0x0000040010204080L, 0x0000040010204081L,
- 0x0000040800000000L, 0x0000040800000001L, 0x0000040800000080L, 0x0000040800000081L,
- 0x0000040800004000L, 0x0000040800004001L, 0x0000040800004080L, 0x0000040800004081L,
- 0x0000040800200000L, 0x0000040800200001L, 0x0000040800200080L, 0x0000040800200081L,
- 0x0000040800204000L, 0x0000040800204001L, 0x0000040800204080L, 0x0000040800204081L,
- 0x0000040810000000L, 0x0000040810000001L, 0x0000040810000080L, 0x0000040810000081L,
- 0x0000040810004000L, 0x0000040810004001L, 0x0000040810004080L, 0x0000040810004081L,
- 0x0000040810200000L, 0x0000040810200001L, 0x0000040810200080L, 0x0000040810200081L,
- 0x0000040810204000L, 0x0000040810204001L, 0x0000040810204080L, 0x0000040810204081L,
- 0x0002000000000000L, 0x0002000000000001L, 0x0002000000000080L, 0x0002000000000081L,
- 0x0002000000004000L, 0x0002000000004001L, 0x0002000000004080L, 0x0002000000004081L,
- 0x0002000000200000L, 0x0002000000200001L, 0x0002000000200080L, 0x0002000000200081L,
- 0x0002000000204000L, 0x0002000000204001L, 0x0002000000204080L, 0x0002000000204081L,
- 0x0002000010000000L, 0x0002000010000001L, 0x0002000010000080L, 0x0002000010000081L,
- 0x0002000010004000L, 0x0002000010004001L, 0x0002000010004080L, 0x0002000010004081L,
- 0x0002000010200000L, 0x0002000010200001L, 0x0002000010200080L, 0x0002000010200081L,
- 0x0002000010204000L, 0x0002000010204001L, 0x0002000010204080L, 0x0002000010204081L,
- 0x0002000800000000L, 0x0002000800000001L, 0x0002000800000080L, 0x0002000800000081L,
- 0x0002000800004000L, 0x0002000800004001L, 0x0002000800004080L, 0x0002000800004081L,
- 0x0002000800200000L, 0x0002000800200001L, 0x0002000800200080L, 0x0002000800200081L,
- 0x0002000800204000L, 0x0002000800204001L, 0x0002000800204080L, 0x0002000800204081L,
- 0x0002000810000000L, 0x0002000810000001L, 0x0002000810000080L, 0x0002000810000081L,
- 0x0002000810004000L, 0x0002000810004001L, 0x0002000810004080L, 0x0002000810004081L,
- 0x0002000810200000L, 0x0002000810200001L, 0x0002000810200080L, 0x0002000810200081L,
- 0x0002000810204000L, 0x0002000810204001L, 0x0002000810204080L, 0x0002000810204081L,
- 0x0002040000000000L, 0x0002040000000001L, 0x0002040000000080L, 0x0002040000000081L,
- 0x0002040000004000L, 0x0002040000004001L, 0x0002040000004080L, 0x0002040000004081L,
- 0x0002040000200000L, 0x0002040000200001L, 0x0002040000200080L, 0x0002040000200081L,
- 0x0002040000204000L, 0x0002040000204001L, 0x0002040000204080L, 0x0002040000204081L,
- 0x0002040010000000L, 0x0002040010000001L, 0x0002040010000080L, 0x0002040010000081L,
- 0x0002040010004000L, 0x0002040010004001L, 0x0002040010004080L, 0x0002040010004081L,
- 0x0002040010200000L, 0x0002040010200001L, 0x0002040010200080L, 0x0002040010200081L,
- 0x0002040010204000L, 0x0002040010204001L, 0x0002040010204080L, 0x0002040010204081L,
- 0x0002040800000000L, 0x0002040800000001L, 0x0002040800000080L, 0x0002040800000081L,
- 0x0002040800004000L, 0x0002040800004001L, 0x0002040800004080L, 0x0002040800004081L,
- 0x0002040800200000L, 0x0002040800200001L, 0x0002040800200080L, 0x0002040800200081L,
- 0x0002040800204000L, 0x0002040800204001L, 0x0002040800204080L, 0x0002040800204081L,
- 0x0002040810000000L, 0x0002040810000001L, 0x0002040810000080L, 0x0002040810000081L,
- 0x0002040810004000L, 0x0002040810004001L, 0x0002040810004080L, 0x0002040810004081L,
- 0x0002040810200000L, 0x0002040810200001L, 0x0002040810200080L, 0x0002040810200081L,
- 0x0002040810204000L, 0x0002040810204001L, 0x0002040810204080L, 0x0002040810204081L,
- 0x0100000000000000L, 0x0100000000000001L, 0x0100000000000080L, 0x0100000000000081L,
- 0x0100000000004000L, 0x0100000000004001L, 0x0100000000004080L, 0x0100000000004081L,
- 0x0100000000200000L, 0x0100000000200001L, 0x0100000000200080L, 0x0100000000200081L,
- 0x0100000000204000L, 0x0100000000204001L, 0x0100000000204080L, 0x0100000000204081L,
- 0x0100000010000000L, 0x0100000010000001L, 0x0100000010000080L, 0x0100000010000081L,
- 0x0100000010004000L, 0x0100000010004001L, 0x0100000010004080L, 0x0100000010004081L,
- 0x0100000010200000L, 0x0100000010200001L, 0x0100000010200080L, 0x0100000010200081L,
- 0x0100000010204000L, 0x0100000010204001L, 0x0100000010204080L, 0x0100000010204081L,
- 0x0100000800000000L, 0x0100000800000001L, 0x0100000800000080L, 0x0100000800000081L,
- 0x0100000800004000L, 0x0100000800004001L, 0x0100000800004080L, 0x0100000800004081L,
- 0x0100000800200000L, 0x0100000800200001L, 0x0100000800200080L, 0x0100000800200081L,
- 0x0100000800204000L, 0x0100000800204001L, 0x0100000800204080L, 0x0100000800204081L,
- 0x0100000810000000L, 0x0100000810000001L, 0x0100000810000080L, 0x0100000810000081L,
- 0x0100000810004000L, 0x0100000810004001L, 0x0100000810004080L, 0x0100000810004081L,
- 0x0100000810200000L, 0x0100000810200001L, 0x0100000810200080L, 0x0100000810200081L,
- 0x0100000810204000L, 0x0100000810204001L, 0x0100000810204080L, 0x0100000810204081L,
- 0x0100040000000000L, 0x0100040000000001L, 0x0100040000000080L, 0x0100040000000081L,
- 0x0100040000004000L, 0x0100040000004001L, 0x0100040000004080L, 0x0100040000004081L,
- 0x0100040000200000L, 0x0100040000200001L, 0x0100040000200080L, 0x0100040000200081L,
- 0x0100040000204000L, 0x0100040000204001L, 0x0100040000204080L, 0x0100040000204081L,
- 0x0100040010000000L, 0x0100040010000001L, 0x0100040010000080L, 0x0100040010000081L,
- 0x0100040010004000L, 0x0100040010004001L, 0x0100040010004080L, 0x0100040010004081L,
- 0x0100040010200000L, 0x0100040010200001L, 0x0100040010200080L, 0x0100040010200081L,
- 0x0100040010204000L, 0x0100040010204001L, 0x0100040010204080L, 0x0100040010204081L,
- 0x0100040800000000L, 0x0100040800000001L, 0x0100040800000080L, 0x0100040800000081L,
- 0x0100040800004000L, 0x0100040800004001L, 0x0100040800004080L, 0x0100040800004081L,
- 0x0100040800200000L, 0x0100040800200001L, 0x0100040800200080L, 0x0100040800200081L,
- 0x0100040800204000L, 0x0100040800204001L, 0x0100040800204080L, 0x0100040800204081L,
- 0x0100040810000000L, 0x0100040810000001L, 0x0100040810000080L, 0x0100040810000081L,
- 0x0100040810004000L, 0x0100040810004001L, 0x0100040810004080L, 0x0100040810004081L,
- 0x0100040810200000L, 0x0100040810200001L, 0x0100040810200080L, 0x0100040810200081L,
- 0x0100040810204000L, 0x0100040810204001L, 0x0100040810204080L, 0x0100040810204081L,
- 0x0102000000000000L, 0x0102000000000001L, 0x0102000000000080L, 0x0102000000000081L,
- 0x0102000000004000L, 0x0102000000004001L, 0x0102000000004080L, 0x0102000000004081L,
- 0x0102000000200000L, 0x0102000000200001L, 0x0102000000200080L, 0x0102000000200081L,
- 0x0102000000204000L, 0x0102000000204001L, 0x0102000000204080L, 0x0102000000204081L,
- 0x0102000010000000L, 0x0102000010000001L, 0x0102000010000080L, 0x0102000010000081L,
- 0x0102000010004000L, 0x0102000010004001L, 0x0102000010004080L, 0x0102000010004081L,
- 0x0102000010200000L, 0x0102000010200001L, 0x0102000010200080L, 0x0102000010200081L,
- 0x0102000010204000L, 0x0102000010204001L, 0x0102000010204080L, 0x0102000010204081L,
- 0x0102000800000000L, 0x0102000800000001L, 0x0102000800000080L, 0x0102000800000081L,
- 0x0102000800004000L, 0x0102000800004001L, 0x0102000800004080L, 0x0102000800004081L,
- 0x0102000800200000L, 0x0102000800200001L, 0x0102000800200080L, 0x0102000800200081L,
- 0x0102000800204000L, 0x0102000800204001L, 0x0102000800204080L, 0x0102000800204081L,
- 0x0102000810000000L, 0x0102000810000001L, 0x0102000810000080L, 0x0102000810000081L,
- 0x0102000810004000L, 0x0102000810004001L, 0x0102000810004080L, 0x0102000810004081L,
- 0x0102000810200000L, 0x0102000810200001L, 0x0102000810200080L, 0x0102000810200081L,
- 0x0102000810204000L, 0x0102000810204001L, 0x0102000810204080L, 0x0102000810204081L,
- 0x0102040000000000L, 0x0102040000000001L, 0x0102040000000080L, 0x0102040000000081L,
- 0x0102040000004000L, 0x0102040000004001L, 0x0102040000004080L, 0x0102040000004081L,
- 0x0102040000200000L, 0x0102040000200001L, 0x0102040000200080L, 0x0102040000200081L,
- 0x0102040000204000L, 0x0102040000204001L, 0x0102040000204080L, 0x0102040000204081L,
- 0x0102040010000000L, 0x0102040010000001L, 0x0102040010000080L, 0x0102040010000081L,
- 0x0102040010004000L, 0x0102040010004001L, 0x0102040010004080L, 0x0102040010004081L,
- 0x0102040010200000L, 0x0102040010200001L, 0x0102040010200080L, 0x0102040010200081L,
- 0x0102040010204000L, 0x0102040010204001L, 0x0102040010204080L, 0x0102040010204081L,
- 0x0102040800000000L, 0x0102040800000001L, 0x0102040800000080L, 0x0102040800000081L,
- 0x0102040800004000L, 0x0102040800004001L, 0x0102040800004080L, 0x0102040800004081L,
- 0x0102040800200000L, 0x0102040800200001L, 0x0102040800200080L, 0x0102040800200081L,
- 0x0102040800204000L, 0x0102040800204001L, 0x0102040800204080L, 0x0102040800204081L,
- 0x0102040810000000L, 0x0102040810000001L, 0x0102040810000080L, 0x0102040810000081L,
- 0x0102040810004000L, 0x0102040810004001L, 0x0102040810004080L, 0x0102040810004081L,
- 0x0102040810200000L, 0x0102040810200001L, 0x0102040810200080L, 0x0102040810200081L,
- 0x0102040810204000L, 0x0102040810204001L, 0x0102040810204080L, 0x0102040810204081L
- };
- // For toString(); must have length 64
- private const string ZEROES = "0000000000000000000000000000000000000000000000000000000000000000";
- internal static readonly byte[] BitLengths =
- {
- 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
- 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
- 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
- };
- // TODO make m fixed for the LongArray, and hence compute T once and for all
- private long[] m_ints;
- public LongArray(int intLen)
- {
- m_ints = new long[intLen];
- }
- public LongArray(long[] ints)
- {
- m_ints = ints;
- }
- public LongArray(long[] ints, int off, int len)
- {
- if (off == 0 && len == ints.Length)
- {
- m_ints = ints;
- }
- else
- {
- m_ints = new long[len];
- Array.Copy(ints, off, m_ints, 0, len);
- }
- }
- public LongArray(BigInteger bigInt)
- {
- if (bigInt == null || bigInt.SignValue < 0)
- {
- throw new ArgumentException("invalid F2m field value", "bigInt");
- }
- if (bigInt.SignValue == 0)
- {
- m_ints = new long[] { 0L };
- return;
- }
- byte[] barr = bigInt.ToByteArray();
- int barrLen = barr.Length;
- int barrStart = 0;
- if (barr[0] == 0)
- {
- // First byte is 0 to enforce highest (=sign) bit is zero.
- // In this case ignore barr[0].
- barrLen--;
- barrStart = 1;
- }
- int intLen = (barrLen + 7) / 8;
- m_ints = new long[intLen];
- int iarrJ = intLen - 1;
- int rem = barrLen % 8 + barrStart;
- long temp = 0;
- int barrI = barrStart;
- if (barrStart < rem)
- {
- for (; barrI < rem; barrI++)
- {
- temp <<= 8;
- uint barrBarrI = barr[barrI];
- temp |= barrBarrI;
- }
- m_ints[iarrJ--] = temp;
- }
- for (; iarrJ >= 0; iarrJ--)
- {
- temp = 0;
- for (int i = 0; i < 8; i++)
- {
- temp <<= 8;
- uint barrBarrI = barr[barrI++];
- temp |= barrBarrI;
- }
- m_ints[iarrJ] = temp;
- }
- }
- internal void CopyTo(long[] z, int zOff)
- {
- Array.Copy(m_ints, 0, z, zOff, m_ints.Length);
- }
- public bool IsOne()
- {
- long[] a = m_ints;
- if (a[0] != 1L)
- {
- return false;
- }
- for (int i = 1; i < a.Length; ++i)
- {
- if (a[i] != 0L)
- {
- return false;
- }
- }
- return true;
- }
- public bool IsZero()
- {
- long[] a = m_ints;
- for (int i = 0; i < a.Length; ++i)
- {
- if (a[i] != 0L)
- {
- return false;
- }
- }
- return true;
- }
- public int GetUsedLength()
- {
- return GetUsedLengthFrom(m_ints.Length);
- }
- public int GetUsedLengthFrom(int from)
- {
- long[] a = m_ints;
- from = System.Math.Min(from, a.Length);
- if (from < 1)
- {
- return 0;
- }
- // Check if first element will act as sentinel
- if (a[0] != 0)
- {
- while (a[--from] == 0)
- {
- }
- return from + 1;
- }
- do
- {
- if (a[--from] != 0)
- {
- return from + 1;
- }
- }
- while (from > 0);
- return 0;
- }
- public int Degree()
- {
- int i = m_ints.Length;
- long w;
- do
- {
- if (i == 0)
- {
- return 0;
- }
- w = m_ints[--i];
- }
- while (w == 0);
- return (i << 6) + BitLength(w);
- }
- private int DegreeFrom(int limit)
- {
- int i = (int)(((uint)limit + 62) >> 6);
- long w;
- do
- {
- if (i == 0)
- {
- return 0;
- }
- w = m_ints[--i];
- }
- while (w == 0);
- return (i << 6) + BitLength(w);
- }
- // private int lowestCoefficient()
- // {
- // for (int i = 0; i < m_ints.Length; ++i)
- // {
- // long mi = m_ints[i];
- // if (mi != 0)
- // {
- // int j = 0;
- // while ((mi & 0xFFL) == 0)
- // {
- // j += 8;
- // mi >>>= 8;
- // }
- // while ((mi & 1L) == 0)
- // {
- // ++j;
- // mi >>>= 1;
- // }
- // return (i << 6) + j;
- // }
- // }
- // return -1;
- // }
- private static int BitLength(long w)
- {
- int u = (int)((ulong)w >> 32), b;
- if (u == 0)
- {
- u = (int)w;
- b = 0;
- }
- else
- {
- b = 32;
- }
- int t = (int)((uint)u >> 16), k;
- if (t == 0)
- {
- t = (int)((uint)u >> 8);
- k = (t == 0) ? BitLengths[u] : 8 + BitLengths[t];
- }
- else
- {
- int v = (int)((uint)t >> 8);
- k = (v == 0) ? 16 + BitLengths[t] : 24 + BitLengths[v];
- }
- return b + k;
- }
- private long[] ResizedInts(int newLen)
- {
- long[] newInts = new long[newLen];
- Array.Copy(m_ints, 0, newInts, 0, System.Math.Min(m_ints.Length, newLen));
- return newInts;
- }
- public BigInteger ToBigInteger()
- {
- int usedLen = GetUsedLength();
- if (usedLen == 0)
- {
- return BigInteger.Zero;
- }
- long highestInt = m_ints[usedLen - 1];
- byte[] temp = new byte[8];
- int barrI = 0;
- bool trailingZeroBytesDone = false;
- for (int j = 7; j >= 0; j--)
- {
- byte thisByte = (byte)((ulong)highestInt >> (8 * j));
- if (trailingZeroBytesDone || (thisByte != 0))
- {
- trailingZeroBytesDone = true;
- temp[barrI++] = thisByte;
- }
- }
- int barrLen = 8 * (usedLen - 1) + barrI;
- byte[] barr = new byte[barrLen];
- for (int j = 0; j < barrI; j++)
- {
- barr[j] = temp[j];
- }
- // Highest value int is done now
- for (int iarrJ = usedLen - 2; iarrJ >= 0; iarrJ--)
- {
- long mi = m_ints[iarrJ];
- for (int j = 7; j >= 0; j--)
- {
- barr[barrI++] = (byte)((ulong)mi >> (8 * j));
- }
- }
- return new BigInteger(1, barr);
- }
- // private static long shiftUp(long[] x, int xOff, int count)
- // {
- // long prev = 0;
- // for (int i = 0; i < count; ++i)
- // {
- // long next = x[xOff + i];
- // x[xOff + i] = (next << 1) | prev;
- // prev = next >>> 63;
- // }
- // return prev;
- // }
- private static long ShiftUp(long[] x, int xOff, int count, int shift)
- {
- int shiftInv = 64 - shift;
- long prev = 0;
- for (int i = 0; i < count; ++i)
- {
- long next = x[xOff + i];
- x[xOff + i] = (next << shift) | prev;
- prev = (long)((ulong)next >> shiftInv);
- }
- return prev;
- }
- private static long ShiftUp(long[] x, int xOff, long[] z, int zOff, int count, int shift)
- {
- int shiftInv = 64 - shift;
- long prev = 0;
- for (int i = 0; i < count; ++i)
- {
- long next = x[xOff + i];
- z[zOff + i] = (next << shift) | prev;
- prev = (long)((ulong)next >> shiftInv);
- }
- return prev;
- }
- public LongArray AddOne()
- {
- if (m_ints.Length == 0)
- {
- return new LongArray(new long[]{ 1L });
- }
- int resultLen = System.Math.Max(1, GetUsedLength());
- long[] ints = ResizedInts(resultLen);
- ints[0] ^= 1L;
- return new LongArray(ints);
- }
- // private void addShiftedByBits(LongArray other, int bits)
- // {
- // int words = bits >>> 6;
- // int shift = bits & 0x3F;
- //
- // if (shift == 0)
- // {
- // addShiftedByWords(other, words);
- // return;
- // }
- //
- // int otherUsedLen = other.GetUsedLength();
- // if (otherUsedLen == 0)
- // {
- // return;
- // }
- //
- // int minLen = otherUsedLen + words + 1;
- // if (minLen > m_ints.Length)
- // {
- // m_ints = resizedInts(minLen);
- // }
- //
- // long carry = addShiftedByBits(m_ints, words, other.m_ints, 0, otherUsedLen, shift);
- // m_ints[otherUsedLen + words] ^= carry;
- // }
- private void AddShiftedByBitsSafe(LongArray other, int otherDegree, int bits)
- {
- int otherLen = (int)((uint)(otherDegree + 63) >> 6);
- int words = (int)((uint)bits >> 6);
- int shift = bits & 0x3F;
- if (shift == 0)
- {
- Add(m_ints, words, other.m_ints, 0, otherLen);
- return;
- }
- long carry = AddShiftedUp(m_ints, words, other.m_ints, 0, otherLen, shift);
- if (carry != 0L)
- {
- m_ints[otherLen + words] ^= carry;
- }
- }
- private static long AddShiftedUp(long[] x, int xOff, long[] y, int yOff, int count, int shift)
- {
- int shiftInv = 64 - shift;
- long prev = 0;
- for (int i = 0; i < count; ++i)
- {
- long next = y[yOff + i];
- x[xOff + i] ^= (next << shift) | prev;
- prev = (long)((ulong)next >> shiftInv);
- }
- return prev;
- }
- private static long AddShiftedDown(long[] x, int xOff, long[] y, int yOff, int count, int shift)
- {
- int shiftInv = 64 - shift;
- long prev = 0;
- int i = count;
- while (--i >= 0)
- {
- long next = y[yOff + i];
- x[xOff + i] ^= (long)((ulong)next >> shift) | prev;
- prev = next << shiftInv;
- }
- return prev;
- }
- public void AddShiftedByWords(LongArray other, int words)
- {
- int otherUsedLen = other.GetUsedLength();
- if (otherUsedLen == 0)
- {
- return;
- }
- int minLen = otherUsedLen + words;
- if (minLen > m_ints.Length)
- {
- m_ints = ResizedInts(minLen);
- }
- Add(m_ints, words, other.m_ints, 0, otherUsedLen);
- }
- private static void Add(long[] x, int xOff, long[] y, int yOff, int count)
- {
- for (int i = 0; i < count; ++i)
- {
- x[xOff + i] ^= y[yOff + i];
- }
- }
- private static void Add(long[] x, int xOff, long[] y, int yOff, long[] z, int zOff, int count)
- {
- for (int i = 0; i < count; ++i)
- {
- z[zOff + i] = x[xOff + i] ^ y[yOff + i];
- }
- }
- private static void AddBoth(long[] x, int xOff, long[] y1, int y1Off, long[] y2, int y2Off, int count)
- {
- for (int i = 0; i < count; ++i)
- {
- x[xOff + i] ^= y1[y1Off + i] ^ y2[y2Off + i];
- }
- }
- private static void Distribute(long[] x, int src, int dst1, int dst2, int count)
- {
- for (int i = 0; i < count; ++i)
- {
- long v = x[src + i];
- x[dst1 + i] ^= v;
- x[dst2 + i] ^= v;
- }
- }
- public int Length
- {
- get { return m_ints.Length; }
- }
- private static void FlipWord(long[] buf, int off, int bit, long word)
- {
- int n = off + (int)((uint)bit >> 6);
- int shift = bit & 0x3F;
- if (shift == 0)
- {
- buf[n] ^= word;
- }
- else
- {
- buf[n] ^= word << shift;
- word = (long)((ulong)word >> (64 - shift));
- if (word != 0)
- {
- buf[++n] ^= word;
- }
- }
- }
- // private static long getWord(long[] buf, int off, int len, int bit)
- // {
- // int n = off + (bit >>> 6);
- // int shift = bit & 0x3F;
- // if (shift == 0)
- // {
- // return buf[n];
- // }
- // long result = buf[n] >>> shift;
- // if (++n < len)
- // {
- // result |= buf[n] << (64 - shift);
- // }
- // return result;
- // }
- public bool TestBitZero()
- {
- return m_ints.Length > 0 && (m_ints[0] & 1L) != 0;
- }
- private static bool TestBit(long[] buf, int off, int n)
- {
- // theInt = n / 64
- int theInt = (int)((uint)n >> 6);
- // theBit = n % 64
- int theBit = n & 0x3F;
- long tester = 1L << theBit;
- return (buf[off + theInt] & tester) != 0;
- }
- private static void FlipBit(long[] buf, int off, int n)
- {
- // theInt = n / 64
- int theInt = (int)((uint)n >> 6);
- // theBit = n % 64
- int theBit = n & 0x3F;
- long flipper = 1L << theBit;
- buf[off + theInt] ^= flipper;
- }
- // private static void SetBit(long[] buf, int off, int n)
- // {
- // // theInt = n / 64
- // int theInt = n >>> 6;
- // // theBit = n % 64
- // int theBit = n & 0x3F;
- // long setter = 1L << theBit;
- // buf[off + theInt] |= setter;
- // }
- //
- // private static void ClearBit(long[] buf, int off, int n)
- // {
- // // theInt = n / 64
- // int theInt = n >>> 6;
- // // theBit = n % 64
- // int theBit = n & 0x3F;
- // long setter = 1L << theBit;
- // buf[off + theInt] &= ~setter;
- // }
- private static void MultiplyWord(long a, long[] b, int bLen, long[] c, int cOff)
- {
- if ((a & 1L) != 0L)
- {
- Add(c, cOff, b, 0, bLen);
- }
- int k = 1;
- while ((a = (long)((ulong)a >> 1)) != 0L)
- {
- if ((a & 1L) != 0L)
- {
- long carry = AddShiftedUp(c, cOff, b, 0, bLen, k);
- if (carry != 0L)
- {
- c[cOff + bLen] ^= carry;
- }
- }
- ++k;
- }
- }
- public LongArray ModMultiplyLD(LongArray other, int m, int[] ks)
- {
- /*
- * Find out the degree of each argument and handle the zero cases
- */
- int aDeg = Degree();
- if (aDeg == 0)
- {
- return this;
- }
- int bDeg = other.Degree();
- if (bDeg == 0)
- {
- return other;
- }
- /*
- * Swap if necessary so that A is the smaller argument
- */
- LongArray A = this, B = other;
- if (aDeg > bDeg)
- {
- A = other; B = this;
- int tmp = aDeg; aDeg = bDeg; bDeg = tmp;
- }
- /*
- * Establish the word lengths of the arguments and result
- */
- int aLen = (int)((uint)(aDeg + 63) >> 6);
- int bLen = (int)((uint)(bDeg + 63) >> 6);
- int cLen = (int)((uint)(aDeg + bDeg + 62) >> 6);
- if (aLen == 1)
- {
- long a0 = A.m_ints[0];
- if (a0 == 1L)
- {
- return B;
- }
- /*
- * Fast path for small A, with performance dependent only on the number of set bits
- */
- long[] c0 = new long[cLen];
- MultiplyWord(a0, B.m_ints, bLen, c0, 0);
- /*
- * Reduce the raw answer against the reduction coefficients
- */
- return ReduceResult(c0, 0, cLen, m, ks);
- }
- /*
- * Determine if B will get bigger during shifting
- */
- int bMax = (int)((uint)(bDeg + 7 + 63) >> 6);
- /*
- * Lookup table for the offset of each B in the tables
- */
- int[] ti = new int[16];
- /*
- * Precompute table of all 4-bit products of B
- */
- long[] T0 = new long[bMax << 4];
- int tOff = bMax;
- ti[1] = tOff;
- Array.Copy(B.m_ints, 0, T0, tOff, bLen);
- for (int i = 2; i < 16; ++i)
- {
- ti[i] = (tOff += bMax);
- if ((i & 1) == 0)
- {
- ShiftUp(T0, (int)((uint)tOff >> 1), T0, tOff, bMax, 1);
- }
- else
- {
- Add(T0, bMax, T0, tOff - bMax, T0, tOff, bMax);
- }
- }
- /*
- * Second table with all 4-bit products of B shifted 4 bits
- */
- long[] T1 = new long[T0.Length];
- ShiftUp(T0, 0, T1, 0, T0.Length, 4);
- // shiftUp(T0, bMax, T1, bMax, tOff, 4);
- long[] a = A.m_ints;
- long[] c = new long[cLen];
- int MASK = 0xF;
- /*
- * Lopez-Dahab algorithm
- */
- for (int k = 56; k >= 0; k -= 8)
- {
- for (int j = 1; j < aLen; j += 2)
- {
- int aVal = (int)((ulong)a[j] >> k);
- int u = aVal & MASK;
- int v = (int)((uint)aVal >> 4) & MASK;
- AddBoth(c, j - 1, T0, ti[u], T1, ti[v], bMax);
- }
- ShiftUp(c, 0, cLen, 8);
- }
- for (int k = 56; k >= 0; k -= 8)
- {
- for (int j = 0; j < aLen; j += 2)
- {
- int aVal = (int)((ulong)a[j] >> k);
- int u = aVal & MASK;
- int v = (int)((uint)aVal >> 4) & MASK;
- AddBoth(c, j, T0, ti[u], T1, ti[v], bMax);
- }
- if (k > 0)
- {
- ShiftUp(c, 0, cLen, 8);
- }
- }
- /*
- * Finally the raw answer is collected, reduce it against the reduction coefficients
- */
- return ReduceResult(c, 0, cLen, m, ks);
- }
- public LongArray ModMultiply(LongArray other, int m, int[] ks)
- {
- /*
- * Find out the degree of each argument and handle the zero cases
- */
- int aDeg = Degree();
- if (aDeg == 0)
- {
- return this;
- }
- int bDeg = other.Degree();
- if (bDeg == 0)
- {
- return other;
- }
- /*
- * Swap if necessary so that A is the smaller argument
- */
- LongArray A = this, B = other;
- if (aDeg > bDeg)
- {
- A = other; B = this;
- int tmp = aDeg; aDeg = bDeg; bDeg = tmp;
- }
- /*
- * Establish the word lengths of the arguments and result
- */
- int aLen = (int)((uint)(aDeg + 63) >> 6);
- int bLen = (int)((uint)(bDeg + 63) >> 6);
- int cLen = (int)((uint)(aDeg + bDeg + 62) >> 6);
- if (aLen == 1)
- {
- long a0 = A.m_ints[0];
- if (a0 == 1L)
- {
- return B;
- }
- /*
- * Fast path for small A, with performance dependent only on the number of set bits
- */
- long[] c0 = new long[cLen];
- MultiplyWord(a0, B.m_ints, bLen, c0, 0);
- /*
- * Reduce the raw answer against the reduction coefficients
- */
- return ReduceResult(c0, 0, cLen, m, ks);
- }
- /*
- * Determine if B will get bigger during shifting
- */
- int bMax = (int)((uint)(bDeg + 7 + 63) >> 6);
- /*
- * Lookup table for the offset of each B in the tables
- */
- int[] ti = new int[16];
- /*
- * Precompute table of all 4-bit products of B
- */
- long[] T0 = new long[bMax << 4];
- int tOff = bMax;
- ti[1] = tOff;
- Array.Copy(B.m_ints, 0, T0, tOff, bLen);
- for (int i = 2; i < 16; ++i)
- {
- ti[i] = (tOff += bMax);
- if ((i & 1) == 0)
- {
- ShiftUp(T0, (int)((uint)tOff >> 1), T0, tOff, bMax, 1);
- }
- else
- {
- Add(T0, bMax, T0, tOff - bMax, T0, tOff, bMax);
- }
- }
- /*
- * Second table with all 4-bit products of B shifted 4 bits
- */
- long[] T1 = new long[T0.Length];
- ShiftUp(T0, 0, T1, 0, T0.Length, 4);
- // ShiftUp(T0, bMax, T1, bMax, tOff, 4);
- long[] a = A.m_ints;
- long[] c = new long[cLen << 3];
- int MASK = 0xF;
- /*
- * Lopez-Dahab (Modified) algorithm
- */
- for (int aPos = 0; aPos < aLen; ++aPos)
- {
- long aVal = a[aPos];
- int cOff = aPos;
- for (;;)
- {
- int u = (int)aVal & MASK;
- aVal = (long)((ulong)aVal >> 4);
- int v = (int)aVal & MASK;
- AddBoth(c, cOff, T0, ti[u], T1, ti[v], bMax);
- aVal = (long)((ulong)aVal >> 4);
- if (aVal == 0L)
- {
- break;
- }
- cOff += cLen;
- }
- }
- {
- int cOff = c.Length;
- while ((cOff -= cLen) != 0)
- {
- AddShiftedUp(c, cOff - cLen, c, cOff, cLen, 8);
- }
- }
- /*
- * Finally the raw answer is collected, reduce it against the reduction coefficients
- */
- return ReduceResult(c, 0, cLen, m, ks);
- }
- public LongArray ModMultiplyAlt(LongArray other, int m, int[] ks)
- {
- /*
- * Find out the degree of each argument and handle the zero cases
- */
- int aDeg = Degree();
- if (aDeg == 0)
- {
- return this;
- }
- int bDeg = other.Degree();
- if (bDeg == 0)
- {
- return other;
- }
- /*
- * Swap if necessary so that A is the smaller argument
- */
- LongArray A = this, B = other;
- if (aDeg > bDeg)
- {
- A = other; B = this;
- int tmp = aDeg; aDeg = bDeg; bDeg = tmp;
- }
- /*
- * Establish the word lengths of the arguments and result
- */
- int aLen = (int)((uint)(aDeg + 63) >> 6);
- int bLen = (int)((uint)(bDeg + 63) >> 6);
- int cLen = (int)((uint)(aDeg + bDeg + 62) >> 6);
- if (aLen == 1)
- {
- long a0 = A.m_ints[0];
- if (a0 == 1L)
- {
- return B;
- }
- /*
- * Fast path for small A, with performance dependent only on the number of set bits
- */
- long[] c0 = new long[cLen];
- MultiplyWord(a0, B.m_ints, bLen, c0, 0);
- /*
- * Reduce the raw answer against the reduction coefficients
- */
- return ReduceResult(c0, 0, cLen, m, ks);
- }
- // NOTE: This works, but is slower than width 4 processing
- // if (aLen == 2)
- // {
- // /*
- // * Use common-multiplicand optimization to save ~1/4 of the adds
- // */
- // long a1 = A.m_ints[0], a2 = A.m_ints[1];
- // long aa = a1 & a2; a1 ^= aa; a2 ^= aa;
- //
- // long[] b = B.m_ints;
- // long[] c = new long[cLen];
- // multiplyWord(aa, b, bLen, c, 1);
- // add(c, 0, c, 1, cLen - 1);
- // multiplyWord(a1, b, bLen, c, 0);
- // multiplyWord(a2, b, bLen, c, 1);
- //
- // /*
- // * Reduce the raw answer against the reduction coefficients
- // */
- // return ReduceResult(c, 0, cLen, m, ks);
- // }
- /*
- * Determine the parameters of the Interleaved window algorithm: the 'width' in bits to
- * process together, the number of evaluation 'positions' implied by that width, and the
- * 'top' position at which the regular window algorithm stops.
- */
- int width, positions, top, banks;
- // NOTE: width 4 is the fastest over the entire range of sizes used in current crypto
- // width = 1; positions = 64; top = 64; banks = 4;
- // width = 2; positions = 32; top = 64; banks = 4;
- // width = 3; positions = 21; top = 63; banks = 3;
- width = 4; positions = 16; top = 64; banks = 8;
- // width = 5; positions = 13; top = 65; banks = 7;
- // width = 7; positions = 9; top = 63; banks = 9;
- // width = 8; positions = 8; top = 64; banks = 8;
- /*
- * Determine if B will get bigger during shifting
- */
- int shifts = top < 64 ? positions : positions - 1;
- int bMax = (int)((uint)(bDeg + shifts + 63) >> 6);
- int bTotal = bMax * banks, stride = width * banks;
- /*
- * Create a single temporary buffer, with an offset table to find the positions of things in it
- */
- int[] ci = new int[1 << width];
- int cTotal = aLen;
- {
- ci[0] = cTotal;
- cTotal += bTotal;
- ci[1] = cTotal;
- for (int i = 2; i < ci.Length; ++i)
- {
- cTotal += cLen;
- ci[i] = cTotal;
- }
- cTotal += cLen;
- }
- // NOTE: Provide a safe dump for "high zeroes" since we are adding 'bMax' and not 'bLen'
- ++cTotal;
- long[] c = new long[cTotal];
- // Prepare A in Interleaved form, according to the chosen width
- Interleave(A.m_ints, 0, c, 0, aLen, width);
- // Make a working copy of B, since we will be shifting it
- {
- int bOff = aLen;
- Array.Copy(B.m_ints, 0, c, bOff, bLen);
- for (int bank = 1; bank < banks; ++bank)
- {
- ShiftUp(c, aLen, c, bOff += bMax, bMax, bank);
- }
- }
- /*
- * The main loop analyzes the Interleaved windows in A, and for each non-zero window
- * a single word-array XOR is performed to a carefully selected slice of 'c'. The loop is
- * breadth-first, checking the lowest window in each word, then looping again for the
- * next higher window position.
- */
- int MASK = (1 << width) - 1;
- int k = 0;
- for (;;)
- {
- int aPos = 0;
- do
- {
- long aVal = (long)((ulong)c[aPos] >> k);
- int bank = 0, bOff = aLen;
- for (;;)
- {
- int index = (int)(aVal) & MASK;
- if (index != 0)
- {
- /*
- * Add to a 'c' buffer based on the bit-pattern of 'index'. Since A is in
- * Interleaved form, the bits represent the current B shifted by 0, 'positions',
- * 'positions' * 2, ..., 'positions' * ('width' - 1)
- */
- Add(c, aPos + ci[index], c, bOff, bMax);
- }
- if (++bank == banks)
- {
- break;
- }
- bOff += bMax;
- aVal = (long)((ulong)aVal >> width);
- }
- }
- while (++aPos < aLen);
- if ((k += stride) >= top)
- {
- if (k >= 64)
- {
- break;
- }
- /*
- * Adjustment for window setups with top == 63, the final bit (if any) is processed
- * as the top-bit of a window
- */
- k = 64 - width;
- MASK &= MASK << (top - k);
- }
- /*
- * After each position has been checked for all words of A, B is shifted up 1 place
- */
- ShiftUp(c, aLen, bTotal, banks);
- }
- int ciPos = ci.Length;
- while (--ciPos > 1)
- {
- if ((ciPos & 1L) == 0L)
- {
- /*
- * For even numbers, shift contents and add to the half-position
- */
- AddShiftedUp(c, ci[(uint)ciPos >> 1], c, ci[ciPos], cLen, positions);
- }
- else
- {
- /*
- * For odd numbers, 'distribute' contents to the result and the next-lowest position
- */
- Distribute(c, ci[ciPos], ci[ciPos - 1], ci[1], cLen);
- }
- }
- /*
- * Finally the raw answer is collected, reduce it against the reduction coefficients
- */
- return ReduceResult(c, ci[1], cLen, m, ks);
- }
- public LongArray ModReduce(int m, int[] ks)
- {
- long[] buf = Arrays.Clone(m_ints);
- int rLen = ReduceInPlace(buf, 0, buf.Length, m, ks);
- return new LongArray(buf, 0, rLen);
- }
- public LongArray Multiply(LongArray other, int m, int[] ks)
- {
- /*
- * Find out the degree of each argument and handle the zero cases
- */
- int aDeg = Degree();
- if (aDeg == 0)
- {
- return this;
- }
- int bDeg = other.Degree();
- if (bDeg == 0)
- {
- return other;
- }
- /*
- * Swap if necessary so that A is the smaller argument
- */
- LongArray A = this, B = other;
- if (aDeg > bDeg)
- {
- A = other; B = this;
- int tmp = aDeg; aDeg = bDeg; bDeg = tmp;
- }
- /*
- * Establish the word lengths of the arguments and result
- */
- int aLen = (int)((uint)(aDeg + 63) >> 6);
- int bLen = (int)((uint)(bDeg + 63) >> 6);
- int cLen = (int)((uint)(aDeg + bDeg + 62) >> 6);
- if (aLen == 1)
- {
- long a0 = A.m_ints[0];
- if (a0 == 1L)
- {
- return B;
- }
- /*
- * Fast path for small A, with performance dependent only on the number of set bits
- */
- long[] c0 = new long[cLen];
- MultiplyWord(a0, B.m_ints, bLen, c0, 0);
- /*
- * Reduce the raw answer against the reduction coefficients
- */
- //return ReduceResult(c0, 0, cLen, m, ks);
- return new LongArray(c0, 0, cLen);
- }
- /*
- * Determine if B will get bigger during shifting
- */
- int bMax = (int)((uint)(bDeg + 7 + 63) >> 6);
- /*
- * Lookup table for the offset of each B in the tables
- */
- int[] ti = new int[16];
- /*
- * Precompute table of all 4-bit products of B
- */
- long[] T0 = new long[bMax << 4];
- int tOff = bMax;
- ti[1] = tOff;
- Array.Copy(B.m_ints, 0, T0, tOff, bLen);
- for (int i = 2; i < 16; ++i)
- {
- ti[i] = (tOff += bMax);
- if ((i & 1) == 0)
- {
- ShiftUp(T0, (int)((uint)tOff >> 1), T0, tOff, bMax, 1);
- }
- else
- {
- Add(T0, bMax, T0, tOff - bMax, T0, tOff, bMax);
- }
- }
- /*
- * Second table with all 4-bit products of B shifted 4 bits
- */
- long[] T1 = new long[T0.Length];
- ShiftUp(T0, 0, T1, 0, T0.Length, 4);
- // ShiftUp(T0, bMax, T1, bMax, tOff, 4);
- long[] a = A.m_ints;
- long[] c = new long[cLen << 3];
- int MASK = 0xF;
- /*
- * Lopez-Dahab (Modified) algorithm
- */
- for (int aPos = 0; aPos < aLen; ++aPos)
- {
- long aVal = a[aPos];
- int cOff = aPos;
- for (; ; )
- {
- int u = (int)aVal & MASK;
- aVal = (long)((ulong)aVal >> 4);
- int v = (int)aVal & MASK;
- AddBoth(c, cOff, T0, ti[u], T1, ti[v], bMax);
- aVal = (long)((ulong)aVal >> 4);
- if (aVal == 0L)
- {
- break;
- }
- cOff += cLen;
- }
- }
- {
- int cOff = c.Length;
- while ((cOff -= cLen) != 0)
- {
- AddShiftedUp(c, cOff - cLen, c, cOff, cLen, 8);
- }
- }
- /*
- * Finally the raw answer is collected, reduce it against the reduction coefficients
- */
- //return ReduceResult(c, 0, cLen, m, ks);
- return new LongArray(c, 0, cLen);
- }
- public void Reduce(int m, int[] ks)
- {
- long[] buf = m_ints;
- int rLen = ReduceInPlace(buf, 0, buf.Length, m, ks);
- if (rLen < buf.Length)
- {
- m_ints = new long[rLen];
- Array.Copy(buf, 0, m_ints, 0, rLen);
- }
- }
- private static LongArray ReduceResult(long[] buf, int off, int len, int m, int[] ks)
- {
- int rLen = ReduceInPlace(buf, off, len, m, ks);
- return new LongArray(buf, off, rLen);
- }
- // private static void deInterleave(long[] x, int xOff, long[] z, int zOff, int count, int rounds)
- // {
- // for (int i = 0; i < count; ++i)
- // {
- // z[zOff + i] = deInterleave(x[zOff + i], rounds);
- // }
- // }
- //
- // private static long deInterleave(long x, int rounds)
- // {
- // while (--rounds >= 0)
- // {
- // x = deInterleave32(x & DEInterleave_MASK) | (deInterleave32((x >>> 1) & DEInterleave_MASK) << 32);
- // }
- // return x;
- // }
- //
- // private static long deInterleave32(long x)
- // {
- // x = (x | (x >>> 1)) & 0x3333333333333333L;
- // x = (x | (x >>> 2)) & 0x0F0F0F0F0F0F0F0FL;
- // x = (x | (x >>> 4)) & 0x00FF00FF00FF00FFL;
- // x = (x | (x >>> 8)) & 0x0000FFFF0000FFFFL;
- // x = (x | (x >>> 16)) & 0x00000000FFFFFFFFL;
- // return x;
- // }
- private static int ReduceInPlace(long[] buf, int off, int len, int m, int[] ks)
- {
- int mLen = (m + 63) >> 6;
- if (len < mLen)
- {
- return len;
- }
- int numBits = System.Math.Min(len << 6, (m << 1) - 1); // TODO use actual degree?
- int excessBits = (len << 6) - numBits;
- while (excessBits >= 64)
- {
- --len;
- excessBits -= 64;
- }
- int kLen = ks.Length, kMax = ks[kLen - 1], kNext = kLen > 1 ? ks[kLen - 2] : 0;
- int wordWiseLimit = System.Math.Max(m, kMax + 64);
- int vectorableWords = (excessBits + System.Math.Min(numBits - wordWiseLimit, m - kNext)) >> 6;
- if (vectorableWords > 1)
- {
- int vectorWiseWords = len - vectorableWords;
- ReduceVectorWise(buf, off, len, vectorWiseWords, m, ks);
- while (len > vectorWiseWords)
- {
- buf[off + --len] = 0L;
- }
- numBits = vectorWiseWords << 6;
- }
- if (numBits > wordWiseLimit)
- {
- ReduceWordWise(buf, off, len, wordWiseLimit, m, ks);
- numBits = wordWiseLimit;
- }
- if (numBits > m)
- {
- ReduceBitWise(buf, off, numBits, m, ks);
- }
- return mLen;
- }
- private static void ReduceBitWise(long[] buf, int off, int BitLength, int m, int[] ks)
- {
- while (--BitLength >= m)
- {
- if (TestBit(buf, off, BitLength))
- {
- ReduceBit(buf, off, BitLength, m, ks);
- }
- }
- }
- private static void ReduceBit(long[] buf, int off, int bit, int m, int[] ks)
- {
- FlipBit(buf, off, bit);
- int n = bit - m;
- int j = ks.Length;
- while (--j >= 0)
- {
- FlipBit(buf, off, ks[j] + n);
- }
- FlipBit(buf, off, n);
- }
- private static void ReduceWordWise(long[] buf, int off, int len, int toBit, int m, int[] ks)
- {
- int toPos = (int)((uint)toBit >> 6);
- while (--len > toPos)
- {
- long word = buf[off + len];
- if (word != 0)
- {
- buf[off + len] = 0;
- ReduceWord(buf, off, (len << 6), word, m, ks);
- }
- }
- {
- int partial = toBit & 0x3F;
- long word = (long)((ulong)buf[off + toPos] >> partial);
- if (word != 0)
- {
- buf[off + toPos] ^= word << partial;
- ReduceWord(buf, off, toBit, word, m, ks);
- }
- }
- }
- private static void ReduceWord(long[] buf, int off, int bit, long word, int m, int[] ks)
- {
- int offset = bit - m;
- int j = ks.Length;
- while (--j >= 0)
- {
- FlipWord(buf, off, offset + ks[j], word);
- }
- FlipWord(buf, off, offset, word);
- }
- private static void ReduceVectorWise(long[] buf, int off, int len, int words, int m, int[] ks)
- {
- /*
- * NOTE: It's important we go from highest coefficient to lowest, because for the highest
- * one (only) we allow the ranges to partially overlap, and therefore any changes must take
- * effect for the subsequent lower coefficients.
- */
- int baseBit = (words << 6) - m;
- int j = ks.Length;
- while (--j >= 0)
- {
- FlipVector(buf, off, buf, off + words, len - words, baseBit + ks[j]);
- }
- FlipVector(buf, off, buf, off + words, len - words, baseBit);
- }
- private static void FlipVector(long[] x, int xOff, long[] y, int yOff, int yLen, int bits)
- {
- xOff += (int)((uint)bits >> 6);
- bits &= 0x3F;
- if (bits == 0)
- {
- Add(x, xOff, y, yOff, yLen);
- }
- else
- {
- long carry = AddShiftedDown(x, xOff + 1, y, yOff, yLen, 64 - bits);
- x[xOff] ^= carry;
- }
- }
- public LongArray ModSquare(int m, int[] ks)
- {
- int len = GetUsedLength();
- if (len == 0)
- {
- return this;
- }
- int _2len = len << 1;
- long[] r = new long[_2len];
- int pos = 0;
- while (pos < _2len)
- {
- long mi = m_ints[(uint)pos >> 1];
- r[pos++] = Interleave2_32to64((int)mi);
- r[pos++] = Interleave2_32to64((int)((ulong)mi >> 32));
- }
- return new LongArray(r, 0, ReduceInPlace(r, 0, r.Length, m, ks));
- }
- public LongArray ModSquareN(int n, int m, int[] ks)
- {
- int len = GetUsedLength();
- if (len == 0)
- {
- return this;
- }
-
- int mLen = (m + 63) >> 6;
- long[] r = new long[mLen << 1];
- Array.Copy(m_ints, 0, r, 0, len);
-
- while (--n >= 0)
- {
- SquareInPlace(r, len, m, ks);
- len = ReduceInPlace(r, 0, r.Length, m, ks);
- }
-
- return new LongArray(r, 0, len);
- }
- public LongArray Square(int m, int[] ks)
- {
- int len = GetUsedLength();
- if (len == 0)
- {
- return this;
- }
- int _2len = len << 1;
- long[] r = new long[_2len];
- int pos = 0;
- while (pos < _2len)
- {
- long mi = m_ints[(uint)pos >> 1];
- r[pos++] = Interleave2_32to64((int)mi);
- r[pos++] = Interleave2_32to64((int)((ulong)mi >> 32));
- }
- return new LongArray(r, 0, r.Length);
- }
- private static void SquareInPlace(long[] x, int xLen, int m, int[] ks)
- {
- int pos = xLen << 1;
- while (--xLen >= 0)
- {
- long xVal = x[xLen];
- x[--pos] = Interleave2_32to64((int)((ulong)xVal >> 32));
- x[--pos] = Interleave2_32to64((int)xVal);
- }
- }
- private static void Interleave(long[] x, int xOff, long[] z, int zOff, int count, int width)
- {
- switch (width)
- {
- case 3:
- Interleave3(x, xOff, z, zOff, count);
- break;
- case 5:
- Interleave5(x, xOff, z, zOff, count);
- break;
- case 7:
- Interleave7(x, xOff, z, zOff, count);
- break;
- default:
- Interleave2_n(x, xOff, z, zOff, count, BitLengths[width] - 1);
- break;
- }
- }
- private static void Interleave3(long[] x, int xOff, long[] z, int zOff, int count)
- {
- for (int i = 0; i < count; ++i)
- {
- z[zOff + i] = Interleave3(x[xOff + i]);
- }
- }
- private static long Interleave3(long x)
- {
- long z = x & (1L << 63);
- return z
- | Interleave3_21to63((int)x & 0x1FFFFF)
- | Interleave3_21to63((int)((ulong)x >> 21) & 0x1FFFFF) << 1
- | Interleave3_21to63((int)((ulong)x >> 42) & 0x1FFFFF) << 2;
- // int zPos = 0, wPos = 0, xPos = 0;
- // for (;;)
- // {
- // z |= ((x >>> xPos) & 1L) << zPos;
- // if (++zPos == 63)
- // {
- // String sz2 = Long.toBinaryString(z);
- // return z;
- // }
- // if ((xPos += 21) >= 63)
- // {
- // xPos = ++wPos;
- // }
- // }
- }
- private static long Interleave3_21to63(int x)
- {
- int r00 = INTERLEAVE3_TABLE[x & 0x7F];
- int r21 = INTERLEAVE3_TABLE[((uint)x >> 7) & 0x7F];
- int r42 = INTERLEAVE3_TABLE[(uint)x >> 14];
- return (r42 & 0xFFFFFFFFL) << 42 | (r21 & 0xFFFFFFFFL) << 21 | (r00 & 0xFFFFFFFFL);
- }
- private static void Interleave5(long[] x, int xOff, long[] z, int zOff, int count)
- {
- for (int i = 0; i < count; ++i)
- {
- z[zOff + i] = Interleave5(x[xOff + i]);
- }
- }
- private static long Interleave5(long x)
- {
- return Interleave3_13to65((int)x & 0x1FFF)
- | Interleave3_13to65((int)((ulong)x >> 13) & 0x1FFF) << 1
- | Interleave3_13to65((int)((ulong)x >> 26) & 0x1FFF) << 2
- | Interleave3_13to65((int)((ulong)x >> 39) & 0x1FFF) << 3
- | Interleave3_13to65((int)((ulong)x >> 52) & 0x1FFF) << 4;
- // long z = 0;
- // int zPos = 0, wPos = 0, xPos = 0;
- // for (;;)
- // {
- // z |= ((x >>> xPos) & 1L) << zPos;
- // if (++zPos == 64)
- // {
- // return z;
- // }
- // if ((xPos += 13) >= 64)
- // {
- // xPos = ++wPos;
- // }
- // }
- }
- private static long Interleave3_13to65(int x)
- {
- int r00 = INTERLEAVE5_TABLE[x & 0x7F];
- int r35 = INTERLEAVE5_TABLE[(uint)x >> 7];
- return (r35 & 0xFFFFFFFFL) << 35 | (r00 & 0xFFFFFFFFL);
- }
- private static void Interleave7(long[] x, int xOff, long[] z, int zOff, int count)
- {
- for (int i = 0; i < count; ++i)
- {
- z[zOff + i] = Interleave7(x[xOff + i]);
- }
- }
- private static long Interleave7(long x)
- {
- long z = x & (1L << 63);
- return z
- | INTERLEAVE7_TABLE[(int)x & 0x1FF]
- | INTERLEAVE7_TABLE[(int)((ulong)x >> 9) & 0x1FF] << 1
- | INTERLEAVE7_TABLE[(int)((ulong)x >> 18) & 0x1FF] << 2
- | INTERLEAVE7_TABLE[(int)((ulong)x >> 27) & 0x1FF] << 3
- | INTERLEAVE7_TABLE[(int)((ulong)x >> 36) & 0x1FF] << 4
- | INTERLEAVE7_TABLE[(int)((ulong)x >> 45) & 0x1FF] << 5
- | INTERLEAVE7_TABLE[(int)((ulong)x >> 54) & 0x1FF] << 6;
- // int zPos = 0, wPos = 0, xPos = 0;
- // for (;;)
- // {
- // z |= ((x >>> xPos) & 1L) << zPos;
- // if (++zPos == 63)
- // {
- // return z;
- // }
- // if ((xPos += 9) >= 63)
- // {
- // xPos = ++wPos;
- // }
- // }
- }
- private static void Interleave2_n(long[] x, int xOff, long[] z, int zOff, int count, int rounds)
- {
- for (int i = 0; i < count; ++i)
- {
- z[zOff + i] = Interleave2_n(x[xOff + i], rounds);
- }
- }
- private static long Interleave2_n(long x, int rounds)
- {
- while (rounds > 1)
- {
- rounds -= 2;
- x = Interleave4_16to64((int)x & 0xFFFF)
- | Interleave4_16to64((int)((ulong)x >> 16) & 0xFFFF) << 1
- | Interleave4_16to64((int)((ulong)x >> 32) & 0xFFFF) << 2
- | Interleave4_16to64((int)((ulong)x >> 48) & 0xFFFF) << 3;
- }
- if (rounds > 0)
- {
- x = Interleave2_32to64((int)x) | Interleave2_32to64((int)((ulong)x >> 32)) << 1;
- }
- return x;
- }
- private static long Interleave4_16to64(int x)
- {
- int r00 = INTERLEAVE4_TABLE[x & 0xFF];
- int r32 = INTERLEAVE4_TABLE[(uint)x >> 8];
- return (r32 & 0xFFFFFFFFL) << 32 | (r00 & 0xFFFFFFFFL);
- }
- private static long Interleave2_32to64(int x)
- {
- int r00 = INTERLEAVE2_TABLE[x & 0xFF] | INTERLEAVE2_TABLE[((uint)x >> 8) & 0xFF] << 16;
- int r32 = INTERLEAVE2_TABLE[((uint)x >> 16) & 0xFF] | INTERLEAVE2_TABLE[(uint)x >> 24] << 16;
- return (r32 & 0xFFFFFFFFL) << 32 | (r00 & 0xFFFFFFFFL);
- }
- // private static LongArray ExpItohTsujii2(LongArray B, int n, int m, int[] ks)
- // {
- // LongArray t1 = B, t3 = new LongArray(new long[]{ 1L });
- // int scale = 1;
- //
- // int numTerms = n;
- // while (numTerms > 1)
- // {
- // if ((numTerms & 1) != 0)
- // {
- // t3 = t3.ModMultiply(t1, m, ks);
- // t1 = t1.modSquareN(scale, m, ks);
- // }
- //
- // LongArray t2 = t1.modSquareN(scale, m, ks);
- // t1 = t1.ModMultiply(t2, m, ks);
- // numTerms >>>= 1; scale <<= 1;
- // }
- //
- // return t3.ModMultiply(t1, m, ks);
- // }
- //
- // private static LongArray ExpItohTsujii23(LongArray B, int n, int m, int[] ks)
- // {
- // LongArray t1 = B, t3 = new LongArray(new long[]{ 1L });
- // int scale = 1;
- //
- // int numTerms = n;
- // while (numTerms > 1)
- // {
- // bool m03 = numTerms % 3 == 0;
- // bool m14 = !m03 && (numTerms & 1) != 0;
- //
- // if (m14)
- // {
- // t3 = t3.ModMultiply(t1, m, ks);
- // t1 = t1.modSquareN(scale, m, ks);
- // }
- //
- // LongArray t2 = t1.modSquareN(scale, m, ks);
- // t1 = t1.ModMultiply(t2, m, ks);
- //
- // if (m03)
- // {
- // t2 = t2.modSquareN(scale, m, ks);
- // t1 = t1.ModMultiply(t2, m, ks);
- // numTerms /= 3; scale *= 3;
- // }
- // else
- // {
- // numTerms >>>= 1; scale <<= 1;
- // }
- // }
- //
- // return t3.ModMultiply(t1, m, ks);
- // }
- //
- // private static LongArray ExpItohTsujii235(LongArray B, int n, int m, int[] ks)
- // {
- // LongArray t1 = B, t4 = new LongArray(new long[]{ 1L });
- // int scale = 1;
- //
- // int numTerms = n;
- // while (numTerms > 1)
- // {
- // if (numTerms % 5 == 0)
- // {
- //// t1 = ExpItohTsujii23(t1, 5, m, ks);
- //
- // LongArray t3 = t1;
- // t1 = t1.modSquareN(scale, m, ks);
- //
- // LongArray t2 = t1.modSquareN(scale, m, ks);
- // t1 = t1.ModMultiply(t2, m, ks);
- // t2 = t1.modSquareN(scale << 1, m, ks);
- // t1 = t1.ModMultiply(t2, m, ks);
- //
- // t1 = t1.ModMultiply(t3, m, ks);
- //
- // numTerms /= 5; scale *= 5;
- // continue;
- // }
- //
- // bool m03 = numTerms % 3 == 0;
- // bool m14 = !m03 && (numTerms & 1) != 0;
- //
- // if (m14)
- // {
- // t4 = t4.ModMultiply(t1, m, ks);
- // t1 = t1.modSquareN(scale, m, ks);
- // }
- //
- // LongArray t2 = t1.modSquareN(scale, m, ks);
- // t1 = t1.ModMultiply(t2, m, ks);
- //
- // if (m03)
- // {
- // t2 = t2.modSquareN(scale, m, ks);
- // t1 = t1.ModMultiply(t2, m, ks);
- // numTerms /= 3; scale *= 3;
- // }
- // else
- // {
- // numTerms >>>= 1; scale <<= 1;
- // }
- // }
- //
- // return t4.ModMultiply(t1, m, ks);
- // }
- public LongArray ModInverse(int m, int[] ks)
- {
- /*
- * Fermat's Little Theorem
- */
- // LongArray A = this;
- // LongArray B = A.modSquare(m, ks);
- // LongArray R0 = B, R1 = B;
- // for (int i = 2; i < m; ++i)
- // {
- // R1 = R1.modSquare(m, ks);
- // R0 = R0.ModMultiply(R1, m, ks);
- // }
- //
- // return R0;
- /*
- * Itoh-Tsujii
- */
- // LongArray B = modSquare(m, ks);
- // switch (m)
- // {
- // case 409:
- // return ExpItohTsujii23(B, m - 1, m, ks);
- // case 571:
- // return ExpItohTsujii235(B, m - 1, m, ks);
- // case 163:
- // case 233:
- // case 283:
- // default:
- // return ExpItohTsujii2(B, m - 1, m, ks);
- // }
- /*
- * Inversion in F2m using the extended Euclidean algorithm
- *
- * Input: A nonzero polynomial a(z) of degree at most m-1
- * Output: a(z)^(-1) mod f(z)
- */
- int uzDegree = Degree();
- if (uzDegree == 0)
- {
- throw new InvalidOperationException();
- }
- if (uzDegree == 1)
- {
- return this;
- }
- // u(z) := a(z)
- LongArray uz = (LongArray)Copy();
- int t = (m + 63) >> 6;
- // v(z) := f(z)
- LongArray vz = new LongArray(t);
- ReduceBit(vz.m_ints, 0, m, m, ks);
- // g1(z) := 1, g2(z) := 0
- LongArray g1z = new LongArray(t);
- g1z.m_ints[0] = 1L;
- LongArray g2z = new LongArray(t);
- int[] uvDeg = new int[]{ uzDegree, m + 1 };
- LongArray[] uv = new LongArray[]{ uz, vz };
- int[] ggDeg = new int[]{ 1, 0 };
- LongArray[] gg = new LongArray[]{ g1z, g2z };
- int b = 1;
- int duv1 = uvDeg[b];
- int dgg1 = ggDeg[b];
- int j = duv1 - uvDeg[1 - b];
- for (;;)
- {
- if (j < 0)
- {
- j = -j;
- uvDeg[b] = duv1;
- ggDeg[b] = dgg1;
- b = 1 - b;
- duv1 = uvDeg[b];
- dgg1 = ggDeg[b];
- }
- uv[b].AddShiftedByBitsSafe(uv[1 - b], uvDeg[1 - b], j);
- int duv2 = uv[b].DegreeFrom(duv1);
- if (duv2 == 0)
- {
- return gg[1 - b];
- }
- {
- int dgg2 = ggDeg[1 - b];
- gg[b].AddShiftedByBitsSafe(gg[1 - b], dgg2, j);
- dgg2 += j;
- if (dgg2 > dgg1)
- {
- dgg1 = dgg2;
- }
- else if (dgg2 == dgg1)
- {
- dgg1 = gg[b].DegreeFrom(dgg1);
- }
- }
- j += (duv2 - duv1);
- duv1 = duv2;
- }
- }
- public override bool Equals(object obj)
- {
- return Equals(obj as LongArray);
- }
- public virtual bool Equals(LongArray other)
- {
- if (this == other)
- return true;
- if (null == other)
- return false;
- int usedLen = GetUsedLength();
- if (other.GetUsedLength() != usedLen)
- {
- return false;
- }
- for (int i = 0; i < usedLen; i++)
- {
- if (m_ints[i] != other.m_ints[i])
- {
- return false;
- }
- }
- return true;
- }
- public override int GetHashCode()
- {
- int usedLen = GetUsedLength();
- int hash = 1;
- for (int i = 0; i < usedLen; i++)
- {
- long mi = m_ints[i];
- hash *= 31;
- hash ^= (int)mi;
- hash *= 31;
- hash ^= (int)((ulong)mi >> 32);
- }
- return hash;
- }
- public LongArray Copy()
- {
- return new LongArray(Arrays.Clone(m_ints));
- }
- public override string ToString()
- {
- int i = GetUsedLength();
- if (i == 0)
- {
- return "0";
- }
- StringBuilder sb = new StringBuilder(Convert.ToString(m_ints[--i], 2));
- while (--i >= 0)
- {
- string s = Convert.ToString(m_ints[i], 2);
- // Add leading zeroes, except for highest significant word
- int len = s.Length;
- if (len < 64)
- {
- sb.Append(ZEROES.Substring(len));
- }
- sb.Append(s);
- }
- return sb.ToString();
- }
- }
- }
- #pragma warning restore
- #endif
|