123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 |
- #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
- #pragma warning disable
- using System;
- using BestHTTP.SecureProtocol.Org.BouncyCastle.Math.Raw;
- using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities;
- using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities.Encoders;
- namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Math.EC.Custom.GM
- {
- internal class SM2P256V1FieldElement
- : AbstractFpFieldElement
- {
- public static readonly BigInteger Q = new BigInteger(1,
- Hex.DecodeStrict("FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF"));
- protected internal readonly uint[] x;
- public SM2P256V1FieldElement(BigInteger x)
- {
- if (x == null || x.SignValue < 0 || x.CompareTo(Q) >= 0)
- throw new ArgumentException("value invalid for SM2P256V1FieldElement", "x");
- this.x = SM2P256V1Field.FromBigInteger(x);
- }
- public SM2P256V1FieldElement()
- {
- this.x = Nat256.Create();
- }
- protected internal SM2P256V1FieldElement(uint[] x)
- {
- this.x = x;
- }
- public override bool IsZero
- {
- get { return Nat256.IsZero(x); }
- }
- public override bool IsOne
- {
- get { return Nat256.IsOne(x); }
- }
- public override bool TestBitZero()
- {
- return Nat256.GetBit(x, 0) == 1;
- }
- public override BigInteger ToBigInteger()
- {
- return Nat256.ToBigInteger(x);
- }
- public override string FieldName
- {
- get { return "SM2P256V1Field"; }
- }
- public override int FieldSize
- {
- get { return Q.BitLength; }
- }
- public override ECFieldElement Add(ECFieldElement b)
- {
- uint[] z = Nat256.Create();
- SM2P256V1Field.Add(x, ((SM2P256V1FieldElement)b).x, z);
- return new SM2P256V1FieldElement(z);
- }
- public override ECFieldElement AddOne()
- {
- uint[] z = Nat256.Create();
- SM2P256V1Field.AddOne(x, z);
- return new SM2P256V1FieldElement(z);
- }
- public override ECFieldElement Subtract(ECFieldElement b)
- {
- uint[] z = Nat256.Create();
- SM2P256V1Field.Subtract(x, ((SM2P256V1FieldElement)b).x, z);
- return new SM2P256V1FieldElement(z);
- }
- public override ECFieldElement Multiply(ECFieldElement b)
- {
- uint[] z = Nat256.Create();
- SM2P256V1Field.Multiply(x, ((SM2P256V1FieldElement)b).x, z);
- return new SM2P256V1FieldElement(z);
- }
- public override ECFieldElement Divide(ECFieldElement b)
- {
- //return Multiply(b.Invert());
- uint[] z = Nat256.Create();
- SM2P256V1Field.Inv(((SM2P256V1FieldElement)b).x, z);
- SM2P256V1Field.Multiply(z, x, z);
- return new SM2P256V1FieldElement(z);
- }
- public override ECFieldElement Negate()
- {
- uint[] z = Nat256.Create();
- SM2P256V1Field.Negate(x, z);
- return new SM2P256V1FieldElement(z);
- }
- public override ECFieldElement Square()
- {
- uint[] z = Nat256.Create();
- SM2P256V1Field.Square(x, z);
- return new SM2P256V1FieldElement(z);
- }
- public override ECFieldElement Invert()
- {
- //return new SM2P256V1FieldElement(ToBigInteger().ModInverse(Q));
- uint[] z = Nat256.Create();
- SM2P256V1Field.Inv(x, z);
- return new SM2P256V1FieldElement(z);
- }
- /**
- * return a sqrt root - the routine verifies that the calculation returns the right value - if
- * none exists it returns null.
- */
- public override ECFieldElement Sqrt()
- {
- /*
- * Raise this element to the exponent 2^254 - 2^222 - 2^94 + 2^62
- *
- * Breaking up the exponent's binary representation into "repunits", we get:
- * { 31 1s } { 1 0s } { 128 1s } { 31 0s } { 1 1s } { 62 0s }
- *
- * We use an addition chain for the beginning: [1], 2, 3, 6, 12, [24], 30, [31]
- */
- uint[] x1 = this.x;
- if (Nat256.IsZero(x1) || Nat256.IsOne(x1))
- {
- return this;
- }
- uint[] x2 = Nat256.Create();
- SM2P256V1Field.Square(x1, x2);
- SM2P256V1Field.Multiply(x2, x1, x2);
- uint[] x4 = Nat256.Create();
- SM2P256V1Field.SquareN(x2, 2, x4);
- SM2P256V1Field.Multiply(x4, x2, x4);
- uint[] x6 = Nat256.Create();
- SM2P256V1Field.SquareN(x4, 2, x6);
- SM2P256V1Field.Multiply(x6, x2, x6);
- uint[] x12 = x2;
- SM2P256V1Field.SquareN(x6, 6, x12);
- SM2P256V1Field.Multiply(x12, x6, x12);
- uint[] x24 = Nat256.Create();
- SM2P256V1Field.SquareN(x12, 12, x24);
- SM2P256V1Field.Multiply(x24, x12, x24);
- uint[] x30 = x12;
- SM2P256V1Field.SquareN(x24, 6, x30);
- SM2P256V1Field.Multiply(x30, x6, x30);
- uint[] x31 = x6;
- SM2P256V1Field.Square(x30, x31);
- SM2P256V1Field.Multiply(x31, x1, x31);
- uint[] t1 = x24;
- SM2P256V1Field.SquareN(x31, 31, t1);
- uint[] x62 = x30;
- SM2P256V1Field.Multiply(t1, x31, x62);
- SM2P256V1Field.SquareN(t1, 32, t1);
- SM2P256V1Field.Multiply(t1, x62, t1);
- SM2P256V1Field.SquareN(t1, 62, t1);
- SM2P256V1Field.Multiply(t1, x62, t1);
- SM2P256V1Field.SquareN(t1, 4, t1);
- SM2P256V1Field.Multiply(t1, x4, t1);
- SM2P256V1Field.SquareN(t1, 32, t1);
- SM2P256V1Field.Multiply(t1, x1, t1);
- SM2P256V1Field.SquareN(t1, 62, t1);
- uint[] t2 = x4;
- SM2P256V1Field.Square(t1, t2);
- return Nat256.Eq(x1, t2) ? new SM2P256V1FieldElement(t1) : null;
- }
- public override bool Equals(object obj)
- {
- return Equals(obj as SM2P256V1FieldElement);
- }
- public override bool Equals(ECFieldElement other)
- {
- return Equals(other as SM2P256V1FieldElement);
- }
- public virtual bool Equals(SM2P256V1FieldElement other)
- {
- if (this == other)
- return true;
- if (null == other)
- return false;
- return Nat256.Eq(x, other.x);
- }
- public override int GetHashCode()
- {
- return Q.GetHashCode() ^ Arrays.GetHashCode(x, 0, 8);
- }
- }
- }
- #pragma warning restore
- #endif
|