SecT233Field.cs 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337
  1. #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
  2. #pragma warning disable
  3. using System;
  4. using System.Diagnostics;
  5. using BestHTTP.SecureProtocol.Org.BouncyCastle.Math.Raw;
  6. namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Math.EC.Custom.Sec
  7. {
  8. internal class SecT233Field
  9. {
  10. private const ulong M41 = ulong.MaxValue >> 23;
  11. private const ulong M59 = ulong.MaxValue >> 5;
  12. public static void Add(ulong[] x, ulong[] y, ulong[] z)
  13. {
  14. z[0] = x[0] ^ y[0];
  15. z[1] = x[1] ^ y[1];
  16. z[2] = x[2] ^ y[2];
  17. z[3] = x[3] ^ y[3];
  18. }
  19. public static void AddExt(ulong[] xx, ulong[] yy, ulong[] zz)
  20. {
  21. zz[0] = xx[0] ^ yy[0];
  22. zz[1] = xx[1] ^ yy[1];
  23. zz[2] = xx[2] ^ yy[2];
  24. zz[3] = xx[3] ^ yy[3];
  25. zz[4] = xx[4] ^ yy[4];
  26. zz[5] = xx[5] ^ yy[5];
  27. zz[6] = xx[6] ^ yy[6];
  28. zz[7] = xx[7] ^ yy[7];
  29. }
  30. public static void AddOne(ulong[] x, ulong[] z)
  31. {
  32. z[0] = x[0] ^ 1UL;
  33. z[1] = x[1];
  34. z[2] = x[2];
  35. z[3] = x[3];
  36. }
  37. private static void AddTo(ulong[] x, ulong[] z)
  38. {
  39. z[0] ^= x[0];
  40. z[1] ^= x[1];
  41. z[2] ^= x[2];
  42. z[3] ^= x[3];
  43. }
  44. public static ulong[] FromBigInteger(BigInteger x)
  45. {
  46. return Nat.FromBigInteger64(233, x);
  47. }
  48. public static void HalfTrace(ulong[] x, ulong[] z)
  49. {
  50. ulong[] tt = Nat256.CreateExt64();
  51. Nat256.Copy64(x, z);
  52. for (int i = 1; i < 233; i += 2)
  53. {
  54. ImplSquare(z, tt);
  55. Reduce(tt, z);
  56. ImplSquare(z, tt);
  57. Reduce(tt, z);
  58. AddTo(x, z);
  59. }
  60. }
  61. public static void Invert(ulong[] x, ulong[] z)
  62. {
  63. if (Nat256.IsZero64(x))
  64. throw new InvalidOperationException();
  65. // Itoh-Tsujii inversion
  66. ulong[] t0 = Nat256.Create64();
  67. ulong[] t1 = Nat256.Create64();
  68. Square(x, t0);
  69. Multiply(t0, x, t0);
  70. Square(t0, t0);
  71. Multiply(t0, x, t0);
  72. SquareN(t0, 3, t1);
  73. Multiply(t1, t0, t1);
  74. Square(t1, t1);
  75. Multiply(t1, x, t1);
  76. SquareN(t1, 7, t0);
  77. Multiply(t0, t1, t0);
  78. SquareN(t0, 14, t1);
  79. Multiply(t1, t0, t1);
  80. Square(t1, t1);
  81. Multiply(t1, x, t1);
  82. SquareN(t1, 29, t0);
  83. Multiply(t0, t1, t0);
  84. SquareN(t0, 58, t1);
  85. Multiply(t1, t0, t1);
  86. SquareN(t1, 116, t0);
  87. Multiply(t0, t1, t0);
  88. Square(t0, z);
  89. }
  90. public static void Multiply(ulong[] x, ulong[] y, ulong[] z)
  91. {
  92. ulong[] tt = Nat256.CreateExt64();
  93. ImplMultiply(x, y, tt);
  94. Reduce(tt, z);
  95. }
  96. public static void MultiplyAddToExt(ulong[] x, ulong[] y, ulong[] zz)
  97. {
  98. ulong[] tt = Nat256.CreateExt64();
  99. ImplMultiply(x, y, tt);
  100. AddExt(zz, tt, zz);
  101. }
  102. public static void Reduce(ulong[] xx, ulong[] z)
  103. {
  104. ulong x0 = xx[0], x1 = xx[1], x2 = xx[2], x3 = xx[3];
  105. ulong x4 = xx[4], x5 = xx[5], x6 = xx[6], x7 = xx[7];
  106. x3 ^= (x7 << 23);
  107. x4 ^= (x7 >> 41) ^ (x7 << 33);
  108. x5 ^= (x7 >> 31);
  109. x2 ^= (x6 << 23);
  110. x3 ^= (x6 >> 41) ^ (x6 << 33);
  111. x4 ^= (x6 >> 31);
  112. x1 ^= (x5 << 23);
  113. x2 ^= (x5 >> 41) ^ (x5 << 33);
  114. x3 ^= (x5 >> 31);
  115. x0 ^= (x4 << 23);
  116. x1 ^= (x4 >> 41) ^ (x4 << 33);
  117. x2 ^= (x4 >> 31);
  118. ulong t = x3 >> 41;
  119. z[0] = x0 ^ t;
  120. z[1] = x1 ^ (t << 10);
  121. z[2] = x2;
  122. z[3] = x3 & M41;
  123. }
  124. public static void Reduce23(ulong[] z, int zOff)
  125. {
  126. ulong z3 = z[zOff + 3], t = z3 >> 41;
  127. z[zOff ] ^= t;
  128. z[zOff + 1] ^= (t << 10);
  129. z[zOff + 3] = z3 & M41;
  130. }
  131. public static void Sqrt(ulong[] x, ulong[] z)
  132. {
  133. ulong u0, u1;
  134. u0 = Interleave.Unshuffle(x[0]); u1 = Interleave.Unshuffle(x[1]);
  135. ulong e0 = (u0 & 0x00000000FFFFFFFFUL) | (u1 << 32);
  136. ulong c0 = (u0 >> 32) | (u1 & 0xFFFFFFFF00000000UL);
  137. u0 = Interleave.Unshuffle(x[2]); u1 = Interleave.Unshuffle(x[3]);
  138. ulong e1 = (u0 & 0x00000000FFFFFFFFUL) | (u1 << 32);
  139. ulong c1 = (u0 >> 32) | (u1 & 0xFFFFFFFF00000000UL);
  140. ulong c2;
  141. c2 = (c1 >> 27);
  142. c1 ^= (c0 >> 27) | (c1 << 37);
  143. c0 ^= (c0 << 37);
  144. ulong[] tt = Nat256.CreateExt64();
  145. int[] shifts = { 32, 117, 191 };
  146. for (int i = 0; i < shifts.Length; ++i)
  147. {
  148. int w = shifts[i] >> 6, s = shifts[i] & 63;
  149. Debug.Assert(s != 0);
  150. tt[w ] ^= (c0 << s);
  151. tt[w + 1] ^= (c1 << s) | (c0 >> -s);
  152. tt[w + 2] ^= (c2 << s) | (c1 >> -s);
  153. tt[w + 3] ^= (c2 >> -s);
  154. }
  155. Reduce(tt, z);
  156. z[0] ^= e0;
  157. z[1] ^= e1;
  158. }
  159. public static void Square(ulong[] x, ulong[] z)
  160. {
  161. ulong[] tt = Nat256.CreateExt64();
  162. ImplSquare(x, tt);
  163. Reduce(tt, z);
  164. }
  165. public static void SquareAddToExt(ulong[] x, ulong[] zz)
  166. {
  167. ulong[] tt = Nat256.CreateExt64();
  168. ImplSquare(x, tt);
  169. AddExt(zz, tt, zz);
  170. }
  171. public static void SquareN(ulong[] x, int n, ulong[] z)
  172. {
  173. Debug.Assert(n > 0);
  174. ulong[] tt = Nat256.CreateExt64();
  175. ImplSquare(x, tt);
  176. Reduce(tt, z);
  177. while (--n > 0)
  178. {
  179. ImplSquare(z, tt);
  180. Reduce(tt, z);
  181. }
  182. }
  183. public static uint Trace(ulong[] x)
  184. {
  185. // Non-zero-trace bits: 0, 159
  186. return (uint)(x[0] ^ (x[2] >> 31)) & 1U;
  187. }
  188. protected static void ImplCompactExt(ulong[] zz)
  189. {
  190. ulong z0 = zz[0], z1 = zz[1], z2 = zz[2], z3 = zz[3], z4 = zz[4], z5 = zz[5], z6 = zz[6], z7 = zz[7];
  191. zz[0] = z0 ^ (z1 << 59);
  192. zz[1] = (z1 >> 5) ^ (z2 << 54);
  193. zz[2] = (z2 >> 10) ^ (z3 << 49);
  194. zz[3] = (z3 >> 15) ^ (z4 << 44);
  195. zz[4] = (z4 >> 20) ^ (z5 << 39);
  196. zz[5] = (z5 >> 25) ^ (z6 << 34);
  197. zz[6] = (z6 >> 30) ^ (z7 << 29);
  198. zz[7] = (z7 >> 35);
  199. }
  200. protected static void ImplExpand(ulong[] x, ulong[] z)
  201. {
  202. ulong x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3];
  203. z[0] = x0 & M59;
  204. z[1] = ((x0 >> 59) ^ (x1 << 5)) & M59;
  205. z[2] = ((x1 >> 54) ^ (x2 << 10)) & M59;
  206. z[3] = ((x2 >> 49) ^ (x3 << 15));
  207. }
  208. protected static void ImplMultiply(ulong[] x, ulong[] y, ulong[] zz)
  209. {
  210. /*
  211. * "Two-level seven-way recursion" as described in "Batch binary Edwards", Daniel J. Bernstein.
  212. */
  213. ulong[] f = new ulong[4], g = new ulong[4];
  214. ImplExpand(x, f);
  215. ImplExpand(y, g);
  216. ulong[] u = new ulong[8];
  217. ImplMulwAcc(u, f[0], g[0], zz, 0);
  218. ImplMulwAcc(u, f[1], g[1], zz, 1);
  219. ImplMulwAcc(u, f[2], g[2], zz, 2);
  220. ImplMulwAcc(u, f[3], g[3], zz, 3);
  221. // U *= (1 - t^n)
  222. for (int i = 5; i > 0; --i)
  223. {
  224. zz[i] ^= zz[i - 1];
  225. }
  226. ImplMulwAcc(u, f[0] ^ f[1], g[0] ^ g[1], zz, 1);
  227. ImplMulwAcc(u, f[2] ^ f[3], g[2] ^ g[3], zz, 3);
  228. // V *= (1 - t^2n)
  229. for (int i = 7; i > 1; --i)
  230. {
  231. zz[i] ^= zz[i - 2];
  232. }
  233. // Double-length recursion
  234. {
  235. ulong c0 = f[0] ^ f[2], c1 = f[1] ^ f[3];
  236. ulong d0 = g[0] ^ g[2], d1 = g[1] ^ g[3];
  237. ImplMulwAcc(u, c0 ^ c1, d0 ^ d1, zz, 3);
  238. ulong[] t = new ulong[3];
  239. ImplMulwAcc(u, c0, d0, t, 0);
  240. ImplMulwAcc(u, c1, d1, t, 1);
  241. ulong t0 = t[0], t1 = t[1], t2 = t[2];
  242. zz[2] ^= t0;
  243. zz[3] ^= t0 ^ t1;
  244. zz[4] ^= t2 ^ t1;
  245. zz[5] ^= t2;
  246. }
  247. ImplCompactExt(zz);
  248. }
  249. protected static void ImplMulwAcc(ulong[] u, ulong x, ulong y, ulong[] z, int zOff)
  250. {
  251. Debug.Assert(x >> 59 == 0);
  252. Debug.Assert(y >> 59 == 0);
  253. //u[0] = 0;
  254. u[1] = y;
  255. u[2] = u[1] << 1;
  256. u[3] = u[2] ^ y;
  257. u[4] = u[2] << 1;
  258. u[5] = u[4] ^ y;
  259. u[6] = u[3] << 1;
  260. u[7] = u[6] ^ y;
  261. uint j = (uint)x;
  262. ulong g, h = 0, l = u[j & 7]
  263. ^ (u[(j >> 3) & 7] << 3);
  264. int k = 54;
  265. do
  266. {
  267. j = (uint)(x >> k);
  268. g = u[j & 7]
  269. ^ u[(j >> 3) & 7] << 3;
  270. l ^= (g << k);
  271. h ^= (g >> -k);
  272. }
  273. while ((k -= 6) > 0);
  274. Debug.Assert(h >> 53 == 0);
  275. z[zOff ] ^= l & M59;
  276. z[zOff + 1] ^= (l >> 59) ^ (h << 5);
  277. }
  278. protected static void ImplSquare(ulong[] x, ulong[] zz)
  279. {
  280. Interleave.Expand64To128(x, 0, 4, zz, 0);
  281. }
  282. }
  283. }
  284. #pragma warning restore
  285. #endif