123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422 |
- #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
- #pragma warning disable
- using System;
- using System.Collections;
- using BestHTTP.SecureProtocol.Org.BouncyCastle.Math.EC.Abc;
- using BestHTTP.SecureProtocol.Org.BouncyCastle.Math.EC.Endo;
- using BestHTTP.SecureProtocol.Org.BouncyCastle.Math.EC.Multiplier;
- using BestHTTP.SecureProtocol.Org.BouncyCastle.Math.Field;
- using BestHTTP.SecureProtocol.Org.BouncyCastle.Security;
- using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities;
- namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Math.EC
- {
- /// <remarks>Base class for an elliptic curve.</remarks>
- public abstract class ECCurve
- {
- public const int COORD_AFFINE = 0;
- public const int COORD_HOMOGENEOUS = 1;
- public const int COORD_JACOBIAN = 2;
- public const int COORD_JACOBIAN_CHUDNOVSKY = 3;
- public const int COORD_JACOBIAN_MODIFIED = 4;
- public const int COORD_LAMBDA_AFFINE = 5;
- public const int COORD_LAMBDA_PROJECTIVE = 6;
- public const int COORD_SKEWED = 7;
- public static int[] GetAllCoordinateSystems()
- {
- return new int[]{ COORD_AFFINE, COORD_HOMOGENEOUS, COORD_JACOBIAN, COORD_JACOBIAN_CHUDNOVSKY,
- COORD_JACOBIAN_MODIFIED, COORD_LAMBDA_AFFINE, COORD_LAMBDA_PROJECTIVE, COORD_SKEWED };
- }
- public class Config
- {
- protected ECCurve outer;
- protected int coord;
- protected ECEndomorphism endomorphism;
- protected ECMultiplier multiplier;
- internal Config(ECCurve outer, int coord, ECEndomorphism endomorphism, ECMultiplier multiplier)
- {
- this.outer = outer;
- this.coord = coord;
- this.endomorphism = endomorphism;
- this.multiplier = multiplier;
- }
- public Config SetCoordinateSystem(int coord)
- {
- this.coord = coord;
- return this;
- }
- public Config SetEndomorphism(ECEndomorphism endomorphism)
- {
- this.endomorphism = endomorphism;
- return this;
- }
- public Config SetMultiplier(ECMultiplier multiplier)
- {
- this.multiplier = multiplier;
- return this;
- }
- public ECCurve Create()
- {
- if (!outer.SupportsCoordinateSystem(coord))
- {
- throw new InvalidOperationException("unsupported coordinate system");
- }
- ECCurve c = outer.CloneCurve();
- if (c == outer)
- {
- throw new InvalidOperationException("implementation returned current curve");
- }
- c.m_coord = coord;
- c.m_endomorphism = endomorphism;
- c.m_multiplier = multiplier;
- return c;
- }
- }
- protected readonly IFiniteField m_field;
- protected ECFieldElement m_a, m_b;
- protected BigInteger m_order, m_cofactor;
- protected int m_coord = COORD_AFFINE;
- protected ECEndomorphism m_endomorphism = null;
- protected ECMultiplier m_multiplier = null;
- protected ECCurve(IFiniteField field)
- {
- this.m_field = field;
- }
- public abstract int FieldSize { get; }
- public abstract ECFieldElement FromBigInteger(BigInteger x);
- public abstract bool IsValidFieldElement(BigInteger x);
- public abstract ECFieldElement RandomFieldElement(SecureRandom r);
- public abstract ECFieldElement RandomFieldElementMult(SecureRandom r);
- public virtual Config Configure()
- {
- return new Config(this, this.m_coord, this.m_endomorphism, this.m_multiplier);
- }
- public virtual ECPoint ValidatePoint(BigInteger x, BigInteger y)
- {
- ECPoint p = CreatePoint(x, y);
- if (!p.IsValid())
- {
- throw new ArgumentException("Invalid point coordinates");
- }
- return p;
- }
- public virtual ECPoint ValidatePoint(BigInteger x, BigInteger y, bool withCompression)
- {
- ECPoint p = CreatePoint(x, y, withCompression);
- if (!p.IsValid())
- {
- throw new ArgumentException("Invalid point coordinates");
- }
- return p;
- }
- public virtual ECPoint CreatePoint(BigInteger x, BigInteger y)
- {
- return CreatePoint(x, y, false);
- }
- public virtual ECPoint CreatePoint(BigInteger x, BigInteger y, bool withCompression)
- {
- return CreateRawPoint(FromBigInteger(x), FromBigInteger(y), withCompression);
- }
- protected abstract ECCurve CloneCurve();
- protected internal abstract ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression);
- protected internal abstract ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression);
- protected virtual ECMultiplier CreateDefaultMultiplier()
- {
- GlvEndomorphism glvEndomorphism = m_endomorphism as GlvEndomorphism;
- if (glvEndomorphism != null)
- {
- return new GlvMultiplier(this, glvEndomorphism);
- }
- return new WNafL2RMultiplier();
- }
- public virtual bool SupportsCoordinateSystem(int coord)
- {
- return coord == COORD_AFFINE;
- }
- public virtual PreCompInfo GetPreCompInfo(ECPoint point, string name)
- {
- CheckPoint(point);
- IDictionary table;
- lock (point)
- {
- table = point.m_preCompTable;
- }
- if (null == table)
- return null;
- lock (table)
- {
- return (PreCompInfo)table[name];
- }
- }
- /**
- * Compute a <code>PreCompInfo</code> for a point on this curve, under a given name. Used by
- * <code>ECMultiplier</code>s to save the precomputation for this <code>ECPoint</code> for use
- * by subsequent multiplication.
- *
- * @param point
- * The <code>ECPoint</code> to store precomputations for.
- * @param name
- * A <code>String</code> used to index precomputations of different types.
- * @param callback
- * Called to calculate the <code>PreCompInfo</code>.
- */
- public virtual PreCompInfo Precompute(ECPoint point, string name, IPreCompCallback callback)
- {
- CheckPoint(point);
- IDictionary table;
- lock (point)
- {
- table = point.m_preCompTable;
- if (null == table)
- {
- point.m_preCompTable = table = BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities.Platform.CreateHashtable(4);
- }
- }
- lock (table)
- {
- PreCompInfo existing = (PreCompInfo)table[name];
- PreCompInfo result = callback.Precompute(existing);
- if (result != existing)
- {
- table[name] = result;
- }
- return result;
- }
- }
- public virtual ECPoint ImportPoint(ECPoint p)
- {
- if (this == p.Curve)
- {
- return p;
- }
- if (p.IsInfinity)
- {
- return Infinity;
- }
- // TODO Default behaviour could be improved if the two curves have the same coordinate system by copying any Z coordinates.
- p = p.Normalize();
- return CreatePoint(p.XCoord.ToBigInteger(), p.YCoord.ToBigInteger(), p.IsCompressed);
- }
- /**
- * Normalization ensures that any projective coordinate is 1, and therefore that the x, y
- * coordinates reflect those of the equivalent point in an affine coordinate system. Where more
- * than one point is to be normalized, this method will generally be more efficient than
- * normalizing each point separately.
- *
- * @param points
- * An array of points that will be updated in place with their normalized versions,
- * where necessary
- */
- public virtual void NormalizeAll(ECPoint[] points)
- {
- NormalizeAll(points, 0, points.Length, null);
- }
- /**
- * Normalization ensures that any projective coordinate is 1, and therefore that the x, y
- * coordinates reflect those of the equivalent point in an affine coordinate system. Where more
- * than one point is to be normalized, this method will generally be more efficient than
- * normalizing each point separately. An (optional) z-scaling factor can be applied; effectively
- * each z coordinate is scaled by this value prior to normalization (but only one
- * actual multiplication is needed).
- *
- * @param points
- * An array of points that will be updated in place with their normalized versions,
- * where necessary
- * @param off
- * The start of the range of points to normalize
- * @param len
- * The length of the range of points to normalize
- * @param iso
- * The (optional) z-scaling factor - can be null
- */
- public virtual void NormalizeAll(ECPoint[] points, int off, int len, ECFieldElement iso)
- {
- CheckPoints(points, off, len);
- switch (this.CoordinateSystem)
- {
- case ECCurve.COORD_AFFINE:
- case ECCurve.COORD_LAMBDA_AFFINE:
- {
- if (iso != null)
- throw new ArgumentException("not valid for affine coordinates", "iso");
- return;
- }
- }
- /*
- * Figure out which of the points actually need to be normalized
- */
- ECFieldElement[] zs = new ECFieldElement[len];
- int[] indices = new int[len];
- int count = 0;
- for (int i = 0; i < len; ++i)
- {
- ECPoint p = points[off + i];
- if (null != p && (iso != null || !p.IsNormalized()))
- {
- zs[count] = p.GetZCoord(0);
- indices[count++] = off + i;
- }
- }
- if (count == 0)
- {
- return;
- }
- ECAlgorithms.MontgomeryTrick(zs, 0, count, iso);
- for (int j = 0; j < count; ++j)
- {
- int index = indices[j];
- points[index] = points[index].Normalize(zs[j]);
- }
- }
- public abstract ECPoint Infinity { get; }
- public virtual IFiniteField Field
- {
- get { return m_field; }
- }
- public virtual ECFieldElement A
- {
- get { return m_a; }
- }
- public virtual ECFieldElement B
- {
- get { return m_b; }
- }
- public virtual BigInteger Order
- {
- get { return m_order; }
- }
- public virtual BigInteger Cofactor
- {
- get { return m_cofactor; }
- }
- public virtual int CoordinateSystem
- {
- get { return m_coord; }
- }
- /**
- * Create a cache-safe lookup table for the specified sequence of points. All the points MUST
- * belong to this <code>ECCurve</code> instance, and MUST already be normalized.
- */
- public virtual ECLookupTable CreateCacheSafeLookupTable(ECPoint[] points, int off, int len)
- {
- int FE_BYTES = (FieldSize + 7) / 8;
- byte[] table = new byte[len * FE_BYTES * 2];
- {
- int pos = 0;
- for (int i = 0; i < len; ++i)
- {
- ECPoint p = points[off + i];
- byte[] px = p.RawXCoord.ToBigInteger().ToByteArray();
- byte[] py = p.RawYCoord.ToBigInteger().ToByteArray();
- int pxStart = px.Length > FE_BYTES ? 1 : 0, pxLen = px.Length - pxStart;
- int pyStart = py.Length > FE_BYTES ? 1 : 0, pyLen = py.Length - pyStart;
- Array.Copy(px, pxStart, table, pos + FE_BYTES - pxLen, pxLen); pos += FE_BYTES;
- Array.Copy(py, pyStart, table, pos + FE_BYTES - pyLen, pyLen); pos += FE_BYTES;
- }
- }
- return new DefaultLookupTable(this, table, len);
- }
- protected virtual void CheckPoint(ECPoint point)
- {
- if (null == point || (this != point.Curve))
- throw new ArgumentException("must be non-null and on this curve", "point");
- }
- protected virtual void CheckPoints(ECPoint[] points)
- {
- CheckPoints(points, 0, points.Length);
- }
- protected virtual void CheckPoints(ECPoint[] points, int off, int len)
- {
- if (points == null)
- throw new ArgumentNullException("points");
- if (off < 0 || len < 0 || (off > (points.Length - len)))
- throw new ArgumentException("invalid range specified", "points");
- for (int i = 0; i < len; ++i)
- {
- ECPoint point = points[off + i];
- if (null != point && this != point.Curve)
- throw new ArgumentException("entries must be null or on this curve", "points");
- }
- }
- public virtual bool Equals(ECCurve other)
- {
- if (this == other)
- return true;
- if (null == other)
- return false;
- return Field.Equals(other.Field)
- && A.ToBigInteger().Equals(other.A.ToBigInteger())
- && B.ToBigInteger().Equals(other.B.ToBigInteger());
- }
- public override bool Equals(object obj)
- {
- return Equals(obj as ECCurve);
- }
- public override int GetHashCode()
- {
- return Field.GetHashCode()
- ^ Integers.RotateLeft(A.ToBigInteger().GetHashCode(), 8)
- ^ Integers.RotateLeft(B.ToBigInteger().GetHashCode(), 16);
- }
- protected abstract ECPoint DecompressPoint(int yTilde, BigInteger X1);
- public virtual ECEndomorphism GetEndomorphism()
- {
- return m_endomorphism;
- }
- /**
- * Sets the default <code>ECMultiplier</code>, unless already set.
- *
- * We avoid locking for performance reasons, so there is no uniqueness guarantee.
- */
- public virtual ECMultiplier GetMultiplier()
- {
- if (this.m_multiplier == null)
- {
- this.m_multiplier = CreateDefaultMultiplier();
- }
- return this.m_multiplier;
- }
- /**
- * Decode a point on this curve from its ASN.1 encoding. The different
- * encodings are taken account of, including point compression for
- * <code>F<sub>p</sub></code> (X9.62 s 4.2.1 pg 17).
- * @return The decoded point.
- */
- public virtual ECPoint DecodePoint(byte[] encoded)
- {
- ECPoint p = null;
- int expectedLength = (FieldSize + 7) / 8;
- byte type = encoded[0];
- switch (type)
- {
- case 0x00: // infinity
- {
- if (encoded.Length != 1)
- throw new ArgumentException("Incorrect length for infinity encoding", "encoded");
- p = Infinity;
- break;
- }
- case 0x02: // compressed
- case 0x03: // compressed
- {
- if (encoded.Length != (expectedLength + 1))
- throw new ArgumentException("Incorrect length for compressed encoding", "encoded");
- int yTilde = type & 1;
- BigInteger X = new BigInteger(1, encoded, 1, expectedLength);
- p = DecompressPoint(yTilde, X);
- if (!p.ImplIsValid(true, true))
- throw new ArgumentException("Invalid point");
- break;
- }
- case 0x04: // uncompressed
- {
- if (encoded.Length != (2 * expectedLength + 1))
- throw new ArgumentException("Incorrect length for uncompressed encoding", "encoded");
- BigInteger X = new BigInteger(1, encoded, 1, expectedLength);
- BigInteger Y = new BigInteger(1, encoded, 1 + expectedLength, expectedLength);
- p = ValidatePoint(X, Y);
- break;
- }
- case 0x06: // hybrid
- case 0x07: // hybrid
- {
- if (encoded.Length != (2 * expectedLength + 1))
- throw new ArgumentException("Incorrect length for hybrid encoding", "encoded");
- BigInteger X = new BigInteger(1, encoded, 1, expectedLength);
- BigInteger Y = new BigInteger(1, encoded, 1 + expectedLength, expectedLength);
- if (Y.TestBit(0) != (type == 0x07))
- throw new ArgumentException("Inconsistent Y coordinate in hybrid encoding", "encoded");
- p = ValidatePoint(X, Y);
- break;
- }
- default:
- throw new FormatException("Invalid point encoding " + type);
- }
- if (type != 0x00 && p.IsInfinity)
- throw new ArgumentException("Invalid infinity encoding", "encoded");
- return p;
- }
- private class DefaultLookupTable
- : AbstractECLookupTable
- {
- private readonly ECCurve m_outer;
- private readonly byte[] m_table;
- private readonly int m_size;
- internal DefaultLookupTable(ECCurve outer, byte[] table, int size)
- {
- this.m_outer = outer;
- this.m_table = table;
- this.m_size = size;
- }
- public override int Size
- {
- get { return m_size; }
- }
- public override ECPoint Lookup(int index)
- {
- int FE_BYTES = (m_outer.FieldSize + 7) / 8;
- byte[] x = new byte[FE_BYTES], y = new byte[FE_BYTES];
- int pos = 0;
- for (int i = 0; i < m_size; ++i)
- {
- byte MASK = (byte)(((i ^ index) - 1) >> 31);
- for (int j = 0; j < FE_BYTES; ++j)
- {
- x[j] ^= (byte)(m_table[pos + j] & MASK);
- y[j] ^= (byte)(m_table[pos + FE_BYTES + j] & MASK);
- }
- pos += (FE_BYTES * 2);
- }
- return CreatePoint(x, y);
- }
- public override ECPoint LookupVar(int index)
- {
- int FE_BYTES = (m_outer.FieldSize + 7) / 8;
- byte[] x = new byte[FE_BYTES], y = new byte[FE_BYTES];
- int pos = index * FE_BYTES * 2;
- for (int j = 0; j < FE_BYTES; ++j)
- {
- x[j] = m_table[pos + j];
- y[j] = m_table[pos + FE_BYTES + j];
- }
- return CreatePoint(x, y);
- }
- private ECPoint CreatePoint(byte[] x, byte[] y)
- {
- ECFieldElement X = m_outer.FromBigInteger(new BigInteger(1, x));
- ECFieldElement Y = m_outer.FromBigInteger(new BigInteger(1, y));
- return m_outer.CreateRawPoint(X, Y, false);
- }
- }
- }
- public abstract class AbstractFpCurve
- : ECCurve
- {
- protected AbstractFpCurve(BigInteger q)
- : base(FiniteFields.GetPrimeField(q))
- {
- }
- public override bool IsValidFieldElement(BigInteger x)
- {
- return x != null && x.SignValue >= 0 && x.CompareTo(Field.Characteristic) < 0;
- }
- public override ECFieldElement RandomFieldElement(SecureRandom r)
- {
- /*
- * NOTE: BigInteger comparisons in the rejection sampling are not constant-time, so we
- * use the product of two independent elements to mitigate side-channels.
- */
- BigInteger p = Field.Characteristic;
- ECFieldElement fe1 = FromBigInteger(ImplRandomFieldElement(r, p));
- ECFieldElement fe2 = FromBigInteger(ImplRandomFieldElement(r, p));
- return fe1.Multiply(fe2);
- }
- public override ECFieldElement RandomFieldElementMult(SecureRandom r)
- {
- /*
- * NOTE: BigInteger comparisons in the rejection sampling are not constant-time, so we
- * use the product of two independent elements to mitigate side-channels.
- */
- BigInteger p = Field.Characteristic;
- ECFieldElement fe1 = FromBigInteger(ImplRandomFieldElementMult(r, p));
- ECFieldElement fe2 = FromBigInteger(ImplRandomFieldElementMult(r, p));
- return fe1.Multiply(fe2);
- }
- protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
- {
- ECFieldElement x = FromBigInteger(X1);
- ECFieldElement rhs = x.Square().Add(A).Multiply(x).Add(B);
- ECFieldElement y = rhs.Sqrt();
- /*
- * If y is not a square, then we haven't got a point on the curve
- */
- if (y == null)
- throw new ArgumentException("Invalid point compression");
- if (y.TestBitZero() != (yTilde == 1))
- {
- // Use the other root
- y = y.Negate();
- }
- return CreateRawPoint(x, y, true);
- }
- private static BigInteger ImplRandomFieldElement(SecureRandom r, BigInteger p)
- {
- BigInteger x;
- do
- {
- x = BigIntegers.CreateRandomBigInteger(p.BitLength, r);
- }
- while (x.CompareTo(p) >= 0);
- return x;
- }
- private static BigInteger ImplRandomFieldElementMult(SecureRandom r, BigInteger p)
- {
- BigInteger x;
- do
- {
- x = BigIntegers.CreateRandomBigInteger(p.BitLength, r);
- }
- while (x.SignValue <= 0 || x.CompareTo(p) >= 0);
- return x;
- }
- }
- /**
- * Elliptic curve over Fp
- */
- public class FpCurve
- : AbstractFpCurve
- {
- private const int FP_DEFAULT_COORDS = COORD_JACOBIAN_MODIFIED;
- protected readonly BigInteger m_q, m_r;
- protected readonly FpPoint m_infinity;
- public FpCurve(BigInteger q, BigInteger a, BigInteger b)
- : this(q, a, b, null, null)
- {
- }
- public FpCurve(BigInteger q, BigInteger a, BigInteger b, BigInteger order, BigInteger cofactor)
- : base(q)
- {
- this.m_q = q;
- this.m_r = FpFieldElement.CalculateResidue(q);
- this.m_infinity = new FpPoint(this, null, null, false);
- this.m_a = FromBigInteger(a);
- this.m_b = FromBigInteger(b);
- this.m_order = order;
- this.m_cofactor = cofactor;
- this.m_coord = FP_DEFAULT_COORDS;
- }
- protected FpCurve(BigInteger q, BigInteger r, ECFieldElement a, ECFieldElement b)
- : this(q, r, a, b, null, null)
- {
- }
- protected FpCurve(BigInteger q, BigInteger r, ECFieldElement a, ECFieldElement b, BigInteger order, BigInteger cofactor)
- : base(q)
- {
- this.m_q = q;
- this.m_r = r;
- this.m_infinity = new FpPoint(this, null, null, false);
- this.m_a = a;
- this.m_b = b;
- this.m_order = order;
- this.m_cofactor = cofactor;
- this.m_coord = FP_DEFAULT_COORDS;
- }
- protected override ECCurve CloneCurve()
- {
- return new FpCurve(m_q, m_r, m_a, m_b, m_order, m_cofactor);
- }
- public override bool SupportsCoordinateSystem(int coord)
- {
- switch (coord)
- {
- case COORD_AFFINE:
- case COORD_HOMOGENEOUS:
- case COORD_JACOBIAN:
- case COORD_JACOBIAN_MODIFIED:
- return true;
- default:
- return false;
- }
- }
- public virtual BigInteger Q
- {
- get { return m_q; }
- }
- public override ECPoint Infinity
- {
- get { return m_infinity; }
- }
- public override int FieldSize
- {
- get { return m_q.BitLength; }
- }
- public override ECFieldElement FromBigInteger(BigInteger x)
- {
- return new FpFieldElement(this.m_q, this.m_r, x);
- }
- protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
- {
- return new FpPoint(this, x, y, withCompression);
- }
- protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
- {
- return new FpPoint(this, x, y, zs, withCompression);
- }
- public override ECPoint ImportPoint(ECPoint p)
- {
- if (this != p.Curve && this.CoordinateSystem == COORD_JACOBIAN && !p.IsInfinity)
- {
- switch (p.Curve.CoordinateSystem)
- {
- case COORD_JACOBIAN:
- case COORD_JACOBIAN_CHUDNOVSKY:
- case COORD_JACOBIAN_MODIFIED:
- return new FpPoint(this,
- FromBigInteger(p.RawXCoord.ToBigInteger()),
- FromBigInteger(p.RawYCoord.ToBigInteger()),
- new ECFieldElement[] { FromBigInteger(p.GetZCoord(0).ToBigInteger()) },
- p.IsCompressed);
- default:
- break;
- }
- }
- return base.ImportPoint(p);
- }
- }
- public abstract class AbstractF2mCurve
- : ECCurve
- {
- public static BigInteger Inverse(int m, int[] ks, BigInteger x)
- {
- return new LongArray(x).ModInverse(m, ks).ToBigInteger();
- }
- /**
- * The auxiliary values <code>s<sub>0</sub></code> and
- * <code>s<sub>1</sub></code> used for partial modular reduction for
- * Koblitz curves.
- */
- private BigInteger[] si = null;
- private static IFiniteField BuildField(int m, int k1, int k2, int k3)
- {
- if (k1 == 0)
- {
- throw new ArgumentException("k1 must be > 0");
- }
- if (k2 == 0)
- {
- if (k3 != 0)
- {
- throw new ArgumentException("k3 must be 0 if k2 == 0");
- }
- return FiniteFields.GetBinaryExtensionField(new int[]{ 0, k1, m });
- }
- if (k2 <= k1)
- {
- throw new ArgumentException("k2 must be > k1");
- }
- if (k3 <= k2)
- {
- throw new ArgumentException("k3 must be > k2");
- }
- return FiniteFields.GetBinaryExtensionField(new int[]{ 0, k1, k2, k3, m });
- }
- protected AbstractF2mCurve(int m, int k1, int k2, int k3)
- : base(BuildField(m, k1, k2, k3))
- {
- }
- public override ECPoint CreatePoint(BigInteger x, BigInteger y, bool withCompression)
- {
- ECFieldElement X = FromBigInteger(x), Y = FromBigInteger(y);
- switch (this.CoordinateSystem)
- {
- case COORD_LAMBDA_AFFINE:
- case COORD_LAMBDA_PROJECTIVE:
- {
- if (X.IsZero)
- {
- if (!Y.Square().Equals(B))
- throw new ArgumentException();
- }
- else
- {
- // Y becomes Lambda (X + Y/X) here
- Y = Y.Divide(X).Add(X);
- }
- break;
- }
- default:
- {
- break;
- }
- }
- return CreateRawPoint(X, Y, withCompression);
- }
- public override bool IsValidFieldElement(BigInteger x)
- {
- return x != null && x.SignValue >= 0 && x.BitLength <= FieldSize;
- }
- public override ECFieldElement RandomFieldElement(SecureRandom r)
- {
- int m = FieldSize;
- return FromBigInteger(BigIntegers.CreateRandomBigInteger(m, r));
- }
- public override ECFieldElement RandomFieldElementMult(SecureRandom r)
- {
- /*
- * NOTE: BigInteger comparisons in the rejection sampling are not constant-time, so we
- * use the product of two independent elements to mitigate side-channels.
- */
- int m = FieldSize;
- ECFieldElement fe1 = FromBigInteger(ImplRandomFieldElementMult(r, m));
- ECFieldElement fe2 = FromBigInteger(ImplRandomFieldElementMult(r, m));
- return fe1.Multiply(fe2);
- }
- protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
- {
- ECFieldElement xp = FromBigInteger(X1), yp = null;
- if (xp.IsZero)
- {
- yp = B.Sqrt();
- }
- else
- {
- ECFieldElement beta = xp.Square().Invert().Multiply(B).Add(A).Add(xp);
- ECFieldElement z = SolveQuadraticEquation(beta);
- if (z != null)
- {
- if (z.TestBitZero() != (yTilde == 1))
- {
- z = z.AddOne();
- }
- switch (this.CoordinateSystem)
- {
- case COORD_LAMBDA_AFFINE:
- case COORD_LAMBDA_PROJECTIVE:
- {
- yp = z.Add(xp);
- break;
- }
- default:
- {
- yp = z.Multiply(xp);
- break;
- }
- }
- }
- }
- if (yp == null)
- throw new ArgumentException("Invalid point compression");
- return CreateRawPoint(xp, yp, true);
- }
- /**
- * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
- * D.1.6) The other solution is <code>z + 1</code>.
- *
- * @param beta
- * The value to solve the quadratic equation for.
- * @return the solution for <code>z<sup>2</sup> + z = beta</code> or
- * <code>null</code> if no solution exists.
- */
- internal ECFieldElement SolveQuadraticEquation(ECFieldElement beta)
- {
- AbstractF2mFieldElement betaF2m = (AbstractF2mFieldElement)beta;
- bool fastTrace = betaF2m.HasFastTrace;
- if (fastTrace && 0 != betaF2m.Trace())
- return null;
- int m = FieldSize;
- // For odd m, use the half-trace
- if (0 != (m & 1))
- {
- ECFieldElement r = betaF2m.HalfTrace();
- if (fastTrace || r.Square().Add(r).Add(beta).IsZero)
- return r;
- return null;
- }
- if (beta.IsZero)
- return beta;
- ECFieldElement gamma, z, zeroElement = FromBigInteger(BigInteger.Zero);
- do
- {
- ECFieldElement t = FromBigInteger(BigInteger.Arbitrary(m));
- z = zeroElement;
- ECFieldElement w = beta;
- for (int i = 1; i < m; i++)
- {
- ECFieldElement w2 = w.Square();
- z = z.Square().Add(w2.Multiply(t));
- w = w2.Add(beta);
- }
- if (!w.IsZero)
- {
- return null;
- }
- gamma = z.Square().Add(z);
- }
- while (gamma.IsZero);
- return z;
- }
- /**
- * @return the auxiliary values <code>s<sub>0</sub></code> and
- * <code>s<sub>1</sub></code> used for partial modular reduction for
- * Koblitz curves.
- */
- internal virtual BigInteger[] GetSi()
- {
- if (si == null)
- {
- lock (this)
- {
- if (si == null)
- {
- si = Tnaf.GetSi(this);
- }
- }
- }
- return si;
- }
- /**
- * Returns true if this is a Koblitz curve (ABC curve).
- * @return true if this is a Koblitz curve (ABC curve), false otherwise
- */
- public virtual bool IsKoblitz
- {
- get
- {
- return m_order != null && m_cofactor != null && m_b.IsOne && (m_a.IsZero || m_a.IsOne);
- }
- }
- private static BigInteger ImplRandomFieldElementMult(SecureRandom r, int m)
- {
- BigInteger x;
- do
- {
- x = BigIntegers.CreateRandomBigInteger(m, r);
- }
- while (x.SignValue <= 0);
- return x;
- }
- }
- /**
- * Elliptic curves over F2m. The Weierstrass equation is given by
- * <code>y<sup>2</sup> + xy = x<sup>3</sup> + ax<sup>2</sup> + b</code>.
- */
- public class F2mCurve
- : AbstractF2mCurve
- {
- private const int F2M_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
- /**
- * The exponent <code>m</code> of <code>F<sub>2<sup>m</sup></sub></code>.
- */
- private readonly int m;
- /**
- * TPB: The integer <code>k</code> where <code>x<sup>m</sup> +
- * x<sup>k</sup> + 1</code> represents the reduction polynomial
- * <code>f(z)</code>.<br/>
- * PPB: The integer <code>k1</code> where <code>x<sup>m</sup> +
- * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
- * represents the reduction polynomial <code>f(z)</code>.<br/>
- */
- private readonly int k1;
- /**
- * TPB: Always set to <code>0</code><br/>
- * PPB: The integer <code>k2</code> where <code>x<sup>m</sup> +
- * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
- * represents the reduction polynomial <code>f(z)</code>.<br/>
- */
- private readonly int k2;
- /**
- * TPB: Always set to <code>0</code><br/>
- * PPB: The integer <code>k3</code> where <code>x<sup>m</sup> +
- * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
- * represents the reduction polynomial <code>f(z)</code>.<br/>
- */
- private readonly int k3;
- /**
- * The point at infinity on this curve.
- */
- protected readonly F2mPoint m_infinity;
- /**
- * Constructor for Trinomial Polynomial Basis (TPB).
- * @param m The exponent <code>m</code> of
- * <code>F<sub>2<sup>m</sup></sub></code>.
- * @param k The integer <code>k</code> where <code>x<sup>m</sup> +
- * x<sup>k</sup> + 1</code> represents the reduction
- * polynomial <code>f(z)</code>.
- * @param a The coefficient <code>a</code> in the Weierstrass equation
- * for non-supersingular elliptic curves over
- * <code>F<sub>2<sup>m</sup></sub></code>.
- * @param b The coefficient <code>b</code> in the Weierstrass equation
- * for non-supersingular elliptic curves over
- * <code>F<sub>2<sup>m</sup></sub></code>.
- */
- public F2mCurve(
- int m,
- int k,
- BigInteger a,
- BigInteger b)
- : this(m, k, 0, 0, a, b, null, null)
- {
- }
- /**
- * Constructor for Trinomial Polynomial Basis (TPB).
- * @param m The exponent <code>m</code> of
- * <code>F<sub>2<sup>m</sup></sub></code>.
- * @param k The integer <code>k</code> where <code>x<sup>m</sup> +
- * x<sup>k</sup> + 1</code> represents the reduction
- * polynomial <code>f(z)</code>.
- * @param a The coefficient <code>a</code> in the Weierstrass equation
- * for non-supersingular elliptic curves over
- * <code>F<sub>2<sup>m</sup></sub></code>.
- * @param b The coefficient <code>b</code> in the Weierstrass equation
- * for non-supersingular elliptic curves over
- * <code>F<sub>2<sup>m</sup></sub></code>.
- * @param order The order of the main subgroup of the elliptic curve.
- * @param cofactor The cofactor of the elliptic curve, i.e.
- * <code>#E<sub>a</sub>(F<sub>2<sup>m</sup></sub>) = h * n</code>.
- */
- public F2mCurve(
- int m,
- int k,
- BigInteger a,
- BigInteger b,
- BigInteger order,
- BigInteger cofactor)
- : this(m, k, 0, 0, a, b, order, cofactor)
- {
- }
- /**
- * Constructor for Pentanomial Polynomial Basis (PPB).
- * @param m The exponent <code>m</code> of
- * <code>F<sub>2<sup>m</sup></sub></code>.
- * @param k1 The integer <code>k1</code> where <code>x<sup>m</sup> +
- * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
- * represents the reduction polynomial <code>f(z)</code>.
- * @param k2 The integer <code>k2</code> where <code>x<sup>m</sup> +
- * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
- * represents the reduction polynomial <code>f(z)</code>.
- * @param k3 The integer <code>k3</code> where <code>x<sup>m</sup> +
- * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
- * represents the reduction polynomial <code>f(z)</code>.
- * @param a The coefficient <code>a</code> in the Weierstrass equation
- * for non-supersingular elliptic curves over
- * <code>F<sub>2<sup>m</sup></sub></code>.
- * @param b The coefficient <code>b</code> in the Weierstrass equation
- * for non-supersingular elliptic curves over
- * <code>F<sub>2<sup>m</sup></sub></code>.
- */
- public F2mCurve(
- int m,
- int k1,
- int k2,
- int k3,
- BigInteger a,
- BigInteger b)
- : this(m, k1, k2, k3, a, b, null, null)
- {
- }
- /**
- * Constructor for Pentanomial Polynomial Basis (PPB).
- * @param m The exponent <code>m</code> of
- * <code>F<sub>2<sup>m</sup></sub></code>.
- * @param k1 The integer <code>k1</code> where <code>x<sup>m</sup> +
- * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
- * represents the reduction polynomial <code>f(z)</code>.
- * @param k2 The integer <code>k2</code> where <code>x<sup>m</sup> +
- * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
- * represents the reduction polynomial <code>f(z)</code>.
- * @param k3 The integer <code>k3</code> where <code>x<sup>m</sup> +
- * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
- * represents the reduction polynomial <code>f(z)</code>.
- * @param a The coefficient <code>a</code> in the Weierstrass equation
- * for non-supersingular elliptic curves over
- * <code>F<sub>2<sup>m</sup></sub></code>.
- * @param b The coefficient <code>b</code> in the Weierstrass equation
- * for non-supersingular elliptic curves over
- * <code>F<sub>2<sup>m</sup></sub></code>.
- * @param order The order of the main subgroup of the elliptic curve.
- * @param cofactor The cofactor of the elliptic curve, i.e.
- * <code>#E<sub>a</sub>(F<sub>2<sup>m</sup></sub>) = h * n</code>.
- */
- public F2mCurve(
- int m,
- int k1,
- int k2,
- int k3,
- BigInteger a,
- BigInteger b,
- BigInteger order,
- BigInteger cofactor)
- : base(m, k1, k2, k3)
- {
- this.m = m;
- this.k1 = k1;
- this.k2 = k2;
- this.k3 = k3;
- this.m_order = order;
- this.m_cofactor = cofactor;
- this.m_infinity = new F2mPoint(this, null, null, false);
- if (k1 == 0)
- throw new ArgumentException("k1 must be > 0");
- if (k2 == 0)
- {
- if (k3 != 0)
- throw new ArgumentException("k3 must be 0 if k2 == 0");
- }
- else
- {
- if (k2 <= k1)
- throw new ArgumentException("k2 must be > k1");
- if (k3 <= k2)
- throw new ArgumentException("k3 must be > k2");
- }
- this.m_a = FromBigInteger(a);
- this.m_b = FromBigInteger(b);
- this.m_coord = F2M_DEFAULT_COORDS;
- }
- protected F2mCurve(int m, int k1, int k2, int k3, ECFieldElement a, ECFieldElement b, BigInteger order, BigInteger cofactor)
- : base(m, k1, k2, k3)
- {
- this.m = m;
- this.k1 = k1;
- this.k2 = k2;
- this.k3 = k3;
- this.m_order = order;
- this.m_cofactor = cofactor;
- this.m_infinity = new F2mPoint(this, null, null, false);
- this.m_a = a;
- this.m_b = b;
- this.m_coord = F2M_DEFAULT_COORDS;
- }
- protected override ECCurve CloneCurve()
- {
- return new F2mCurve(m, k1, k2, k3, m_a, m_b, m_order, m_cofactor);
- }
- public override bool SupportsCoordinateSystem(int coord)
- {
- switch (coord)
- {
- case COORD_AFFINE:
- case COORD_HOMOGENEOUS:
- case COORD_LAMBDA_PROJECTIVE:
- return true;
- default:
- return false;
- }
- }
- protected override ECMultiplier CreateDefaultMultiplier()
- {
- if (IsKoblitz)
- {
- return new WTauNafMultiplier();
- }
- return base.CreateDefaultMultiplier();
- }
- public override int FieldSize
- {
- get { return m; }
- }
- public override ECFieldElement FromBigInteger(BigInteger x)
- {
- return new F2mFieldElement(this.m, this.k1, this.k2, this.k3, x);
- }
- protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
- {
- return new F2mPoint(this, x, y, withCompression);
- }
- protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
- {
- return new F2mPoint(this, x, y, zs, withCompression);
- }
- public override ECPoint Infinity
- {
- get { return m_infinity; }
- }
- public int M
- {
- get { return m; }
- }
- /**
- * Return true if curve uses a Trinomial basis.
- *
- * @return true if curve Trinomial, false otherwise.
- */
- public bool IsTrinomial()
- {
- return k2 == 0 && k3 == 0;
- }
- public int K1
- {
- get { return k1; }
- }
- public int K2
- {
- get { return k2; }
- }
- public int K3
- {
- get { return k3; }
- }
- public override ECLookupTable CreateCacheSafeLookupTable(ECPoint[] points, int off, int len)
- {
- int FE_LONGS = (m + 63) / 64;
- long[] table = new long[len * FE_LONGS * 2];
- {
- int pos = 0;
- for (int i = 0; i < len; ++i)
- {
- ECPoint p = points[off + i];
- ((F2mFieldElement)p.RawXCoord).x.CopyTo(table, pos); pos += FE_LONGS;
- ((F2mFieldElement)p.RawYCoord).x.CopyTo(table, pos); pos += FE_LONGS;
- }
- }
- return new DefaultF2mLookupTable(this, table, len);
- }
- private class DefaultF2mLookupTable
- : AbstractECLookupTable
- {
- private readonly F2mCurve m_outer;
- private readonly long[] m_table;
- private readonly int m_size;
- internal DefaultF2mLookupTable(F2mCurve outer, long[] table, int size)
- {
- this.m_outer = outer;
- this.m_table = table;
- this.m_size = size;
- }
- public override int Size
- {
- get { return m_size; }
- }
- public override ECPoint Lookup(int index)
- {
- int FE_LONGS = (m_outer.m + 63) / 64;
- long[] x = new long[FE_LONGS], y = new long[FE_LONGS];
- int pos = 0;
- for (int i = 0; i < m_size; ++i)
- {
- long MASK =((i ^ index) - 1) >> 31;
- for (int j = 0; j < FE_LONGS; ++j)
- {
- x[j] ^= m_table[pos + j] & MASK;
- y[j] ^= m_table[pos + FE_LONGS + j] & MASK;
- }
- pos += (FE_LONGS * 2);
- }
- return CreatePoint(x, y);
- }
- public override ECPoint LookupVar(int index)
- {
- int FE_LONGS = (m_outer.m + 63) / 64;
- long[] x = new long[FE_LONGS], y = new long[FE_LONGS];
- int pos = index * FE_LONGS * 2;
- for (int j = 0; j < FE_LONGS; ++j)
- {
- x[j] = m_table[pos + j];
- y[j] = m_table[pos + FE_LONGS + j];
- }
- return CreatePoint(x, y);
- }
- private ECPoint CreatePoint(long[] x, long[] y)
- {
- int m = m_outer.m;
- int[] ks = m_outer.IsTrinomial() ? new int[] { m_outer.k1 } : new int[] { m_outer.k1, m_outer.k2, m_outer.k3 };
- ECFieldElement X = new F2mFieldElement(m, ks, new LongArray(x));
- ECFieldElement Y = new F2mFieldElement(m, ks, new LongArray(y));
- return m_outer.CreateRawPoint(X, Y, false);
- }
- }
- }
- }
- #pragma warning restore
- #endif
|