SecP160R2FieldElement.cs 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224
  1. #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
  2. #pragma warning disable
  3. using System;
  4. using BestHTTP.SecureProtocol.Org.BouncyCastle.Math.Raw;
  5. using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities;
  6. using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities.Encoders;
  7. namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Math.EC.Custom.Sec
  8. {
  9. internal class SecP160R2FieldElement
  10. : AbstractFpFieldElement
  11. {
  12. public static readonly BigInteger Q = new BigInteger(1,
  13. Hex.DecodeStrict("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73"));
  14. protected internal readonly uint[] x;
  15. public SecP160R2FieldElement(BigInteger x)
  16. {
  17. if (x == null || x.SignValue < 0 || x.CompareTo(Q) >= 0)
  18. throw new ArgumentException("value invalid for SecP160R2FieldElement", "x");
  19. this.x = SecP160R2Field.FromBigInteger(x);
  20. }
  21. public SecP160R2FieldElement()
  22. {
  23. this.x = Nat160.Create();
  24. }
  25. protected internal SecP160R2FieldElement(uint[] x)
  26. {
  27. this.x = x;
  28. }
  29. public override bool IsZero
  30. {
  31. get { return Nat160.IsZero(x); }
  32. }
  33. public override bool IsOne
  34. {
  35. get { return Nat160.IsOne(x); }
  36. }
  37. public override bool TestBitZero()
  38. {
  39. return Nat160.GetBit(x, 0) == 1;
  40. }
  41. public override BigInteger ToBigInteger()
  42. {
  43. return Nat160.ToBigInteger(x);
  44. }
  45. public override string FieldName
  46. {
  47. get { return "SecP160R2Field"; }
  48. }
  49. public override int FieldSize
  50. {
  51. get { return Q.BitLength; }
  52. }
  53. public override ECFieldElement Add(ECFieldElement b)
  54. {
  55. uint[] z = Nat160.Create();
  56. SecP160R2Field.Add(x, ((SecP160R2FieldElement)b).x, z);
  57. return new SecP160R2FieldElement(z);
  58. }
  59. public override ECFieldElement AddOne()
  60. {
  61. uint[] z = Nat160.Create();
  62. SecP160R2Field.AddOne(x, z);
  63. return new SecP160R2FieldElement(z);
  64. }
  65. public override ECFieldElement Subtract(ECFieldElement b)
  66. {
  67. uint[] z = Nat160.Create();
  68. SecP160R2Field.Subtract(x, ((SecP160R2FieldElement)b).x, z);
  69. return new SecP160R2FieldElement(z);
  70. }
  71. public override ECFieldElement Multiply(ECFieldElement b)
  72. {
  73. uint[] z = Nat160.Create();
  74. SecP160R2Field.Multiply(x, ((SecP160R2FieldElement)b).x, z);
  75. return new SecP160R2FieldElement(z);
  76. }
  77. public override ECFieldElement Divide(ECFieldElement b)
  78. {
  79. // return Multiply(b.invert());
  80. uint[] z = Nat160.Create();
  81. SecP160R2Field.Inv(((SecP160R2FieldElement)b).x, z);
  82. SecP160R2Field.Multiply(z, x, z);
  83. return new SecP160R2FieldElement(z);
  84. }
  85. public override ECFieldElement Negate()
  86. {
  87. uint[] z = Nat160.Create();
  88. SecP160R2Field.Negate(x, z);
  89. return new SecP160R2FieldElement(z);
  90. }
  91. public override ECFieldElement Square()
  92. {
  93. uint[] z = Nat160.Create();
  94. SecP160R2Field.Square(x, z);
  95. return new SecP160R2FieldElement(z);
  96. }
  97. public override ECFieldElement Invert()
  98. {
  99. // return new SecP160R2FieldElement(ToBigInteger().modInverse(Q));
  100. uint[] z = Nat160.Create();
  101. SecP160R2Field.Inv(x, z);
  102. return new SecP160R2FieldElement(z);
  103. }
  104. // D.1.4 91
  105. /**
  106. * return a sqrt root - the routine verifies that the calculation returns the right value - if
  107. * none exists it returns null.
  108. */
  109. public override ECFieldElement Sqrt()
  110. {
  111. /*
  112. * Raise this element to the exponent 2^158 - 2^30 - 2^12 - 2^10 - 2^7 - 2^6 - 2^5 - 2^1 - 2^0
  113. *
  114. * Breaking up the exponent's binary representation into "repunits", we get: { 127 1s } { 1
  115. * 0s } { 17 1s } { 1 0s } { 1 1s } { 1 0s } { 2 1s } { 3 0s } { 3 1s } { 1 0s } { 1 1s }
  116. *
  117. * Therefore we need an Addition chain containing 1, 2, 3, 17, 127 (the lengths of the repunits)
  118. * We use: [1], [2], [3], 4, 7, 14, [17], 31, 62, 124, [127]
  119. */
  120. uint[] x1 = this.x;
  121. if (Nat160.IsZero(x1) || Nat160.IsOne(x1))
  122. {
  123. return this;
  124. }
  125. uint[] x2 = Nat160.Create();
  126. SecP160R2Field.Square(x1, x2);
  127. SecP160R2Field.Multiply(x2, x1, x2);
  128. uint[] x3 = Nat160.Create();
  129. SecP160R2Field.Square(x2, x3);
  130. SecP160R2Field.Multiply(x3, x1, x3);
  131. uint[] x4 = Nat160.Create();
  132. SecP160R2Field.Square(x3, x4);
  133. SecP160R2Field.Multiply(x4, x1, x4);
  134. uint[] x7 = Nat160.Create();
  135. SecP160R2Field.SquareN(x4, 3, x7);
  136. SecP160R2Field.Multiply(x7, x3, x7);
  137. uint[] x14 = x4;
  138. SecP160R2Field.SquareN(x7, 7, x14);
  139. SecP160R2Field.Multiply(x14, x7, x14);
  140. uint[] x17 = x7;
  141. SecP160R2Field.SquareN(x14, 3, x17);
  142. SecP160R2Field.Multiply(x17, x3, x17);
  143. uint[] x31 = Nat160.Create();
  144. SecP160R2Field.SquareN(x17, 14, x31);
  145. SecP160R2Field.Multiply(x31, x14, x31);
  146. uint[] x62 = x14;
  147. SecP160R2Field.SquareN(x31, 31, x62);
  148. SecP160R2Field.Multiply(x62, x31, x62);
  149. uint[] x124 = x31;
  150. SecP160R2Field.SquareN(x62, 62, x124);
  151. SecP160R2Field.Multiply(x124, x62, x124);
  152. uint[] x127 = x62;
  153. SecP160R2Field.SquareN(x124, 3, x127);
  154. SecP160R2Field.Multiply(x127, x3, x127);
  155. uint[] t1 = x127;
  156. SecP160R2Field.SquareN(t1, 18, t1);
  157. SecP160R2Field.Multiply(t1, x17, t1);
  158. SecP160R2Field.SquareN(t1, 2, t1);
  159. SecP160R2Field.Multiply(t1, x1, t1);
  160. SecP160R2Field.SquareN(t1, 3, t1);
  161. SecP160R2Field.Multiply(t1, x2, t1);
  162. SecP160R2Field.SquareN(t1, 6, t1);
  163. SecP160R2Field.Multiply(t1, x3, t1);
  164. SecP160R2Field.SquareN(t1, 2, t1);
  165. SecP160R2Field.Multiply(t1, x1, t1);
  166. uint[] t2 = x2;
  167. SecP160R2Field.Square(t1, t2);
  168. return Nat160.Eq(x1, t2) ? new SecP160R2FieldElement(t1) : null;
  169. }
  170. public override bool Equals(object obj)
  171. {
  172. return Equals(obj as SecP160R2FieldElement);
  173. }
  174. public override bool Equals(ECFieldElement other)
  175. {
  176. return Equals(other as SecP160R2FieldElement);
  177. }
  178. public virtual bool Equals(SecP160R2FieldElement other)
  179. {
  180. if (this == other)
  181. return true;
  182. if (null == other)
  183. return false;
  184. return Nat160.Eq(x, other.x);
  185. }
  186. public override int GetHashCode()
  187. {
  188. return Q.GetHashCode() ^ Arrays.GetHashCode(x, 0, 5);
  189. }
  190. }
  191. }
  192. #pragma warning restore
  193. #endif