SecP224R1FieldElement.cs 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275
  1. #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
  2. #pragma warning disable
  3. using System;
  4. using BestHTTP.SecureProtocol.Org.BouncyCastle.Math.Raw;
  5. using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities;
  6. using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities.Encoders;
  7. namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Math.EC.Custom.Sec
  8. {
  9. internal class SecP224R1FieldElement
  10. : AbstractFpFieldElement
  11. {
  12. public static readonly BigInteger Q = new BigInteger(1,
  13. Hex.DecodeStrict("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001"));
  14. protected internal readonly uint[] x;
  15. public SecP224R1FieldElement(BigInteger x)
  16. {
  17. if (x == null || x.SignValue < 0 || x.CompareTo(Q) >= 0)
  18. throw new ArgumentException("value invalid for SecP224R1FieldElement", "x");
  19. this.x = SecP224R1Field.FromBigInteger(x);
  20. }
  21. public SecP224R1FieldElement()
  22. {
  23. this.x = Nat224.Create();
  24. }
  25. protected internal SecP224R1FieldElement(uint[] x)
  26. {
  27. this.x = x;
  28. }
  29. public override bool IsZero
  30. {
  31. get { return Nat224.IsZero(x); }
  32. }
  33. public override bool IsOne
  34. {
  35. get { return Nat224.IsOne(x); }
  36. }
  37. public override bool TestBitZero()
  38. {
  39. return Nat224.GetBit(x, 0) == 1;
  40. }
  41. public override BigInteger ToBigInteger()
  42. {
  43. return Nat224.ToBigInteger(x);
  44. }
  45. public override string FieldName
  46. {
  47. get { return "SecP224R1Field"; }
  48. }
  49. public override int FieldSize
  50. {
  51. get { return Q.BitLength; }
  52. }
  53. public override ECFieldElement Add(ECFieldElement b)
  54. {
  55. uint[] z = Nat224.Create();
  56. SecP224R1Field.Add(x, ((SecP224R1FieldElement)b).x, z);
  57. return new SecP224R1FieldElement(z);
  58. }
  59. public override ECFieldElement AddOne()
  60. {
  61. uint[] z = Nat224.Create();
  62. SecP224R1Field.AddOne(x, z);
  63. return new SecP224R1FieldElement(z);
  64. }
  65. public override ECFieldElement Subtract(ECFieldElement b)
  66. {
  67. uint[] z = Nat224.Create();
  68. SecP224R1Field.Subtract(x, ((SecP224R1FieldElement)b).x, z);
  69. return new SecP224R1FieldElement(z);
  70. }
  71. public override ECFieldElement Multiply(ECFieldElement b)
  72. {
  73. uint[] z = Nat224.Create();
  74. SecP224R1Field.Multiply(x, ((SecP224R1FieldElement)b).x, z);
  75. return new SecP224R1FieldElement(z);
  76. }
  77. public override ECFieldElement Divide(ECFieldElement b)
  78. {
  79. //return Multiply(b.Invert());
  80. uint[] z = Nat224.Create();
  81. SecP224R1Field.Inv(((SecP224R1FieldElement)b).x, z);
  82. SecP224R1Field.Multiply(z, x, z);
  83. return new SecP224R1FieldElement(z);
  84. }
  85. public override ECFieldElement Negate()
  86. {
  87. uint[] z = Nat224.Create();
  88. SecP224R1Field.Negate(x, z);
  89. return new SecP224R1FieldElement(z);
  90. }
  91. public override ECFieldElement Square()
  92. {
  93. uint[] z = Nat224.Create();
  94. SecP224R1Field.Square(x, z);
  95. return new SecP224R1FieldElement(z);
  96. }
  97. public override ECFieldElement Invert()
  98. {
  99. //return new SecP224R1FieldElement(ToBigInteger().ModInverse(Q));
  100. uint[] z = Nat224.Create();
  101. SecP224R1Field.Inv(x, z);
  102. return new SecP224R1FieldElement(z);
  103. }
  104. /**
  105. * return a sqrt root - the routine verifies that the calculation returns the right value - if
  106. * none exists it returns null.
  107. */
  108. public override ECFieldElement Sqrt()
  109. {
  110. uint[] c = this.x;
  111. if (Nat224.IsZero(c) || Nat224.IsOne(c))
  112. return this;
  113. uint[] nc = Nat224.Create();
  114. SecP224R1Field.Negate(c, nc);
  115. uint[] r = Mod.Random(SecP224R1Field.P);
  116. uint[] t = Nat224.Create();
  117. if (!IsSquare(c))
  118. return null;
  119. while (!TrySqrt(nc, r, t))
  120. {
  121. SecP224R1Field.AddOne(r, r);
  122. }
  123. SecP224R1Field.Square(t, r);
  124. return Nat224.Eq(c, r) ? new SecP224R1FieldElement(t) : null;
  125. }
  126. public override bool Equals(object obj)
  127. {
  128. return Equals(obj as SecP224R1FieldElement);
  129. }
  130. public override bool Equals(ECFieldElement other)
  131. {
  132. return Equals(other as SecP224R1FieldElement);
  133. }
  134. public virtual bool Equals(SecP224R1FieldElement other)
  135. {
  136. if (this == other)
  137. return true;
  138. if (null == other)
  139. return false;
  140. return Nat224.Eq(x, other.x);
  141. }
  142. public override int GetHashCode()
  143. {
  144. return Q.GetHashCode() ^ Arrays.GetHashCode(x, 0, 7);
  145. }
  146. private static bool IsSquare(uint[] x)
  147. {
  148. uint[] t1 = Nat224.Create();
  149. uint[] t2 = Nat224.Create();
  150. Nat224.Copy(x, t1);
  151. for (int i = 0; i < 7; ++i)
  152. {
  153. Nat224.Copy(t1, t2);
  154. SecP224R1Field.SquareN(t1, 1 << i, t1);
  155. SecP224R1Field.Multiply(t1, t2, t1);
  156. }
  157. SecP224R1Field.SquareN(t1, 95, t1);
  158. return Nat224.IsOne(t1);
  159. }
  160. private static void RM(uint[] nc, uint[] d0, uint[] e0, uint[] d1, uint[] e1, uint[] f1, uint[] t)
  161. {
  162. SecP224R1Field.Multiply(e1, e0, t);
  163. SecP224R1Field.Multiply(t, nc, t);
  164. SecP224R1Field.Multiply(d1, d0, f1);
  165. SecP224R1Field.Add(f1, t, f1);
  166. SecP224R1Field.Multiply(d1, e0, t);
  167. Nat224.Copy(f1, d1);
  168. SecP224R1Field.Multiply(e1, d0, e1);
  169. SecP224R1Field.Add(e1, t, e1);
  170. SecP224R1Field.Square(e1, f1);
  171. SecP224R1Field.Multiply(f1, nc, f1);
  172. }
  173. private static void RP(uint[] nc, uint[] d1, uint[] e1, uint[] f1, uint[] t)
  174. {
  175. Nat224.Copy(nc, f1);
  176. uint[] d0 = Nat224.Create();
  177. uint[] e0 = Nat224.Create();
  178. for (int i = 0; i < 7; ++i)
  179. {
  180. Nat224.Copy(d1, d0);
  181. Nat224.Copy(e1, e0);
  182. int j = 1 << i;
  183. while (--j >= 0)
  184. {
  185. RS(d1, e1, f1, t);
  186. }
  187. RM(nc, d0, e0, d1, e1, f1, t);
  188. }
  189. }
  190. private static void RS(uint[] d, uint[] e, uint[] f, uint[] t)
  191. {
  192. SecP224R1Field.Multiply(e, d, e);
  193. SecP224R1Field.Twice(e, e);
  194. SecP224R1Field.Square(d, t);
  195. SecP224R1Field.Add(f, t, d);
  196. SecP224R1Field.Multiply(f, t, f);
  197. uint c = Nat.ShiftUpBits(7, f, 2, 0);
  198. SecP224R1Field.Reduce32(c, f);
  199. }
  200. private static bool TrySqrt(uint[] nc, uint[] r, uint[] t)
  201. {
  202. uint[] d1 = Nat224.Create();
  203. Nat224.Copy(r, d1);
  204. uint[] e1 = Nat224.Create();
  205. e1[0] = 1;
  206. uint[] f1 = Nat224.Create();
  207. RP(nc, d1, e1, f1, t);
  208. uint[] d0 = Nat224.Create();
  209. uint[] e0 = Nat224.Create();
  210. for (int k = 1; k < 96; ++k)
  211. {
  212. Nat224.Copy(d1, d0);
  213. Nat224.Copy(e1, e0);
  214. RS(d1, e1, f1, t);
  215. if (Nat224.IsZero(d1))
  216. {
  217. SecP224R1Field.Inv(e0, t);
  218. SecP224R1Field.Multiply(t, d0, t);
  219. return true;
  220. }
  221. }
  222. return false;
  223. }
  224. }
  225. }
  226. #pragma warning restore
  227. #endif