#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
#pragma warning disable
using System;
using Best.HTTP.SecureProtocol.Org.BouncyCastle.Crypto.Parameters;
using Best.HTTP.SecureProtocol.Org.BouncyCastle.Crypto.Utilities;
using Best.HTTP.SecureProtocol.Org.BouncyCastle.Utilities;
namespace Best.HTTP.SecureProtocol.Org.BouncyCastle.Crypto.Engines
{
/**
* The specification for RC5 came from the RC5 Encryption Algorithm
* publication in RSA CryptoBytes, Spring of 1995.
* http://www.rsasecurity.com/rsalabs/cryptobytes.
*
* This implementation is set to work with a 64 bit word size.
*/
public class RC564Engine
: IBlockCipher
{
/*
* the number of rounds to perform
*/
private int _noRounds;
/*
* the expanded key array of size 2*(rounds + 1)
*/
private long [] _S;
/*
* our "magic constants" for wordSize 62
*
* Pw = Odd((e-2) * 2^wordsize)
* Qw = Odd((o-2) * 2^wordsize)
*
* where e is the base of natural logarithms (2.718281828...)
* and o is the golden ratio (1.61803398...)
*/
private static readonly long P64 = unchecked( (long) 0xb7e151628aed2a6bL);
private static readonly long Q64 = unchecked( (long) 0x9e3779b97f4a7c15L);
private bool forEncryption;
/**
* Create an instance of the RC5 encryption algorithm
* and set some defaults
*/
public RC564Engine()
{
_noRounds = 12;
// _S = null;
}
public virtual string AlgorithmName
{
get { return "RC5-64"; }
}
public virtual int GetBlockSize()
{
return 16;
}
/**
* initialise a RC5-64 cipher.
*
* @param forEncryption whether or not we are for encryption.
* @param parameters the parameters required to set up the cipher.
* @exception ArgumentException if the parameters argument is
* inappropriate.
*/
public virtual void Init(bool forEncryption, ICipherParameters parameters)
{
if (!(parameters is RC5Parameters rc5Parameters))
throw new ArgumentException("invalid parameter passed to RC564 init - " + Org.BouncyCastle.Utilities.Platform.GetTypeName(parameters));
this.forEncryption = forEncryption;
_noRounds = rc5Parameters.Rounds;
SetKey(rc5Parameters.GetKey());
}
public virtual int ProcessBlock(byte[] input, int inOff, byte[] output, int outOff)
{
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER || UNITY_2021_2_OR_NEWER
return forEncryption
? EncryptBlock(input.AsSpan(inOff), output.AsSpan(outOff))
: DecryptBlock(input.AsSpan(inOff), output.AsSpan(outOff));
#else
return forEncryption
? EncryptBlock(input, inOff, output, outOff)
: DecryptBlock(input, inOff, output, outOff);
#endif
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER || UNITY_2021_2_OR_NEWER
public virtual int ProcessBlock(ReadOnlySpan input, Span output)
{
return forEncryption
? EncryptBlock(input, output)
: DecryptBlock(input, output);
}
#endif
/**
* Re-key the cipher.
*
* @param key the key to be used
*/
private void SetKey(byte[] key)
{
//
// KEY EXPANSION:
//
// There are 3 phases to the key expansion.
//
// Phase 1:
// Copy the secret key K[0...b-1] into an array L[0..c-1] of
// c = ceil(b/u), where u = wordSize/8 in little-endian order.
// In other words, we fill up L using u consecutive key bytes
// of K. Any unfilled byte positions in L are zeroed. In the
// case that b = c = 0, set c = 1 and L[0] = 0.
//
long[] L = new long[(key.Length + 7) / 8];
for (int i = 0; i != key.Length; i++)
{
L[i / 8] += (long)(key[i] & 0xff) << (8 * (i % 8));
}
//
// Phase 2:
// Initialize S to a particular fixed pseudo-random bit pattern
// using an arithmetic progression modulo 2^wordsize determined
// by the magic numbers, Pw & Qw.
//
_S = new long[2*(_noRounds + 1)];
_S[0] = P64;
for (int i=1; i < _S.Length; i++)
{
_S[i] = (_S[i-1] + Q64);
}
//
// Phase 3:
// Mix in the user's secret key in 3 passes over the arrays S & L.
// The max of the arrays sizes is used as the loop control
//
int iter;
if (L.Length > _S.Length)
{
iter = 3 * L.Length;
}
else
{
iter = 3 * _S.Length;
}
long A = 0, B = 0;
int ii = 0, jj = 0;
for (int k = 0; k < iter; k++)
{
A = _S[ii] = Longs.RotateLeft(_S[ii] + A + B, 3);
B = L[jj] = Longs.RotateLeft(L[jj] + A + B, (int)(A + B));
ii = (ii+1) % _S.Length;
jj = (jj+1) % L.Length;
}
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER || UNITY_2021_2_OR_NEWER
private int EncryptBlock(ReadOnlySpan input, Span output)
{
long A = (long)Pack.LE_To_UInt64(input) + _S[0];
long B = (long)Pack.LE_To_UInt64(input[8..]) + _S[1];
for (int i = 1; i <= _noRounds; i++)
{
A = Longs.RotateLeft(A ^ B, (int)B) + _S[2*i];
B = Longs.RotateLeft(B ^ A, (int)A) + _S[2*i+1];
}
Pack.UInt64_To_LE((ulong)A, output);
Pack.UInt64_To_LE((ulong)B, output[8..]);
return 16;
}
private int DecryptBlock(ReadOnlySpan input, Span output)
{
long A = (long)Pack.LE_To_UInt64(input);
long B = (long)Pack.LE_To_UInt64(input[8..]);
for (int i = _noRounds; i >= 1; i--)
{
B = Longs.RotateRight(B - _S[2*i+1], (int)A) ^ A;
A = Longs.RotateRight(A - _S[2*i], (int)B) ^ B;
}
Pack.UInt64_To_LE((ulong)(A - _S[0]), output);
Pack.UInt64_To_LE((ulong)(B - _S[1]), output[8..]);
return 16;
}
#else
private int EncryptBlock(byte[] input, int inOff, byte[] outBytes, int outOff)
{
long A = (long)Pack.LE_To_UInt64(input, inOff) + _S[0];
long B = (long)Pack.LE_To_UInt64(input, inOff + 8) + _S[1];
for (int i = 1; i <= _noRounds; i++)
{
A = Longs.RotateLeft(A ^ B, (int)B) + _S[2*i];
B = Longs.RotateLeft(B ^ A, (int)A) + _S[2*i+1];
}
Pack.UInt64_To_LE((ulong)A, outBytes, outOff);
Pack.UInt64_To_LE((ulong)B, outBytes, outOff + 8);
return 16;
}
private int DecryptBlock(byte[] input, int inOff, byte[] outBytes, int outOff)
{
long A = (long)Pack.LE_To_UInt64(input, inOff);
long B = (long)Pack.LE_To_UInt64(input, inOff + 8);
for (int i = _noRounds; i >= 1; i--)
{
B = Longs.RotateRight(B - _S[2*i+1], (int)A) ^ A;
A = Longs.RotateRight(A - _S[2*i], (int)B) ^ B;
}
Pack.UInt64_To_LE((ulong)(A - _S[0]), outBytes, outOff);
Pack.UInt64_To_LE((ulong)(B - _S[1]), outBytes, outOff + 8);
return 16;
}
#endif
}
}
#pragma warning restore
#endif