#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR) #pragma warning disable using System; using Best.HTTP.SecureProtocol.Org.BouncyCastle.Crypto.Parameters; using Best.HTTP.SecureProtocol.Org.BouncyCastle.Crypto.Utilities; namespace Best.HTTP.SecureProtocol.Org.BouncyCastle.Crypto.Modes { /** * implements the GOST 28147 OFB counter mode (GCTR). */ public class GOfbBlockCipher : IBlockCipherMode { private byte[] IV; private byte[] ofbV; private byte[] ofbOutV; private readonly int blockSize; private readonly IBlockCipher cipher; bool firstStep = true; int N3; int N4; const int C1 = 16843012; //00000001000000010000000100000100 const int C2 = 16843009; //00000001000000010000000100000001 /** * Basic constructor. * * @param cipher the block cipher to be used as the basis of the * counter mode (must have a 64 bit block size). */ public GOfbBlockCipher( IBlockCipher cipher) { this.cipher = cipher; this.blockSize = cipher.GetBlockSize(); if (blockSize != 8) { throw new ArgumentException("GCTR only for 64 bit block ciphers"); } this.IV = new byte[cipher.GetBlockSize()]; this.ofbV = new byte[cipher.GetBlockSize()]; this.ofbOutV = new byte[cipher.GetBlockSize()]; } /** * return the underlying block cipher that we are wrapping. * * @return the underlying block cipher that we are wrapping. */ public IBlockCipher UnderlyingCipher => cipher; /** * Initialise the cipher and, possibly, the initialisation vector (IV). * If an IV isn't passed as part of the parameter, the IV will be all zeros. * An IV which is too short is handled in FIPS compliant fashion. * * @param encrypting if true the cipher is initialised for * encryption, if false for decryption. * @param parameters the key and other data required by the cipher. * @exception ArgumentException if the parameters argument is inappropriate. */ public void Init( bool forEncryption, //ignored by this CTR mode ICipherParameters parameters) { firstStep = true; N3 = 0; N4 = 0; if (parameters is ParametersWithIV) { ParametersWithIV ivParam = (ParametersWithIV)parameters; byte[] iv = ivParam.GetIV(); if (iv.Length < IV.Length) { // prepend the supplied IV with zeros (per FIPS PUB 81) Array.Copy(iv, 0, IV, IV.Length - iv.Length, iv.Length); for (int i = 0; i < IV.Length - iv.Length; i++) { IV[i] = 0; } } else { Array.Copy(iv, 0, IV, 0, IV.Length); } parameters = ivParam.Parameters; } Reset(); // if it's null, key is to be reused. if (parameters != null) { cipher.Init(true, parameters); } } /** * return the algorithm name and mode. * * @return the name of the underlying algorithm followed by "/GCTR" * and the block size in bits */ public string AlgorithmName { get { return cipher.AlgorithmName + "/GCTR"; } } public bool IsPartialBlockOkay { get { return true; } } /** * return the block size we are operating at (in bytes). * * @return the block size we are operating at (in bytes). */ public int GetBlockSize() { return blockSize; } public int ProcessBlock(byte[] input, int inOff, byte[] output, int outOff) { Check.DataLength(input, inOff, blockSize, "input buffer too short"); Check.OutputLength(output, outOff, blockSize, "output buffer too short"); if (firstStep) { firstStep = false; cipher.ProcessBlock(ofbV, 0, ofbOutV, 0); N3 = (int)Pack.LE_To_UInt32(ofbOutV, 0); N4 = (int)Pack.LE_To_UInt32(ofbOutV, 4); } N3 += C2; N4 += C1; if (N4 < C1) // addition is mod (2**32 - 1) { if (N4 > 0) { N4++; } } Pack.UInt32_To_LE((uint)N3, ofbV, 0); Pack.UInt32_To_LE((uint)N4, ofbV, 4); cipher.ProcessBlock(ofbV, 0, ofbOutV, 0); // // XOR the ofbV with the plaintext producing the cipher text (and // the next input block). // for (int i = 0; i < blockSize; i++) { output[outOff + i] = (byte)(ofbOutV[i] ^ input[inOff + i]); } // // change over the input block. // Array.Copy(ofbV, blockSize, ofbV, 0, ofbV.Length - blockSize); Array.Copy(ofbOutV, 0, ofbV, ofbV.Length - blockSize, blockSize); return blockSize; } #if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER || UNITY_2021_2_OR_NEWER public int ProcessBlock(ReadOnlySpan input, Span output) { Check.DataLength(input, blockSize, "input buffer too short"); Check.OutputLength(output, blockSize, "output buffer too short"); if (firstStep) { firstStep = false; cipher.ProcessBlock(ofbV, ofbOutV); N3 = (int)Pack.LE_To_UInt32(ofbOutV, 0); N4 = (int)Pack.LE_To_UInt32(ofbOutV, 4); } N3 += C2; N4 += C1; if (N4 < C1) // addition is mod (2**32 - 1) { if (N4 > 0) { N4++; } } Pack.UInt32_To_LE((uint)N3, ofbV, 0); Pack.UInt32_To_LE((uint)N4, ofbV, 4); cipher.ProcessBlock(ofbV, ofbOutV); // // XOR the ofbV with the plaintext producing the cipher text (and // the next input block). // for (int i = 0; i < blockSize; i++) { output[i] = (byte)(ofbOutV[i] ^ input[i]); } // // change over the input block. // Array.Copy(ofbV, blockSize, ofbV, 0, ofbV.Length - blockSize); Array.Copy(ofbOutV, 0, ofbV, ofbV.Length - blockSize, blockSize); return blockSize; } #endif /** * reset the feedback vector back to the IV and reset the underlying * cipher. */ public void Reset() { Array.Copy(IV, 0, ofbV, 0, IV.Length); } } } #pragma warning restore #endif