#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
#pragma warning disable
using System;
using System.Runtime.CompilerServices;
using Best.HTTP.SecureProtocol.Org.BouncyCastle.Crypto;
using Best.HTTP.SecureProtocol.Org.BouncyCastle.Crypto.Generators;
using Best.HTTP.SecureProtocol.Org.BouncyCastle.Crypto.Parameters;
using Best.HTTP.SecureProtocol.Org.BouncyCastle.Crypto.Utilities;
namespace Best.HTTP.Shared.TLS.Crypto.Impl
{
///
/// Poly1305 message authentication code, designed by D. J. Bernstein.
///
///
/// Poly1305 computes a 128-bit (16 bytes) authenticator, using a 128 bit nonce and a 256 bit key
/// consisting of a 128 bit key applied to an underlying cipher, and a 128 bit key (with 106
/// effective key bits) used in the authenticator.
///
/// The polynomial calculation in this implementation is adapted from the public domain poly1305-donna-unrolled C implementation
/// by Andrew M (@floodyberry).
///
///
[Best.HTTP.Shared.PlatformSupport.IL2CPP.Il2CppEagerStaticClassConstructionAttribute]
public sealed class FastPoly1305 : IMac
{
private const int BlockSize = 16;
private readonly IBlockCipher cipher;
// Initialised state
/** Polynomial key */
private uint r0, r1, r2, r3, r4;
/** Precomputed 5 * r[1..4] */
private uint s1, s2, s3, s4;
/** Encrypted nonce */
private uint k0, k1, k2, k3;
// Accumulating state
/** Current block of buffered input */
private byte[] currentBlock = new byte[BlockSize];
/** Current offset in input buffer */
private int currentBlockOffset = 0;
/** Polynomial accumulator */
private uint h0, h1, h2, h3, h4;
/**
* Constructs a Poly1305 MAC, where the key passed to init() will be used directly.
*/
public FastPoly1305()
{
this.cipher = null;
}
/**
* Constructs a Poly1305 MAC, using a 128 bit block cipher.
*/
public FastPoly1305(IBlockCipher cipher)
{
if (cipher.GetBlockSize() != BlockSize)
{
throw new ArgumentException("Poly1305 requires a 128 bit block cipher.");
}
this.cipher = cipher;
}
///
/// Initialises the Poly1305 MAC.
///
/// a {@link ParametersWithIV} containing a 128 bit nonce and a {@link KeyParameter} with
/// a 256 bit key complying to the {@link Poly1305KeyGenerator Poly1305 key format}.
public void Init(ICipherParameters parameters)
{
byte[] nonce = null;
if (cipher != null)
{
if (!(parameters is ParametersWithIV))
throw new ArgumentException("Poly1305 requires an IV when used with a block cipher.", "parameters");
ParametersWithIV ivParams = (ParametersWithIV)parameters;
nonce = ivParams.GetIV();
parameters = ivParams.Parameters;
}
if (!(parameters is KeyParameter))
throw new ArgumentException("Poly1305 requires a key.");
KeyParameter keyParams = (KeyParameter)parameters;
SetKey(keyParams.GetKey(), nonce);
Reset();
}
private void SetKey(byte[] key, byte[] nonce)
{
if (key.Length != 32)
throw new ArgumentException("Poly1305 key must be 256 bits.");
if (cipher != null && (nonce == null || nonce.Length != BlockSize))
throw new ArgumentException("Poly1305 requires a 128 bit IV.");
// Extract r portion of key (and "clamp" the values)
uint t0 = Pack.LE_To_UInt32(key, 0);
uint t1 = Pack.LE_To_UInt32(key, 4);
uint t2 = Pack.LE_To_UInt32(key, 8);
uint t3 = Pack.LE_To_UInt32(key, 12);
// NOTE: The masks perform the key "clamping" implicitly
r0 = t0 & 0x03FFFFFFU;
r1 = ((t0 >> 26) | (t1 << 6)) & 0x03FFFF03U;
r2 = ((t1 >> 20) | (t2 << 12)) & 0x03FFC0FFU;
r3 = ((t2 >> 14) | (t3 << 18)) & 0x03F03FFFU;
r4 = (t3 >> 8) & 0x000FFFFFU;
// Precompute multipliers
s1 = r1 * 5;
s2 = r2 * 5;
s3 = r3 * 5;
s4 = r4 * 5;
byte[] kBytes;
int kOff;
if (cipher == null)
{
kBytes = key;
kOff = BlockSize;
}
else
{
// Compute encrypted nonce
kBytes = new byte[BlockSize];
kOff = 0;
cipher.Init(true, new KeyParameter(key, BlockSize, BlockSize));
cipher.ProcessBlock(nonce, 0, kBytes, 0);
}
k0 = Pack.LE_To_UInt32(kBytes, kOff + 0);
k1 = Pack.LE_To_UInt32(kBytes, kOff + 4);
k2 = Pack.LE_To_UInt32(kBytes, kOff + 8);
k3 = Pack.LE_To_UInt32(kBytes, kOff + 12);
}
public string AlgorithmName
{
get { return cipher == null ? "Poly1305" : "Poly1305-" + cipher.AlgorithmName; }
}
public int GetMacSize()
{
return BlockSize;
}
public void Update(byte input)
{
currentBlock[currentBlockOffset++] = input;
if (currentBlockOffset == BlockSize)
{
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER || UNITY_2021_2_OR_NEWER
ProcessBlock(currentBlock);
#else
ProcessBlock(currentBlock, 0);
#endif
currentBlockOffset = 0;
}
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER || UNITY_2021_2_OR_NEWER
[MethodImpl(MethodImplOptions.AggressiveInlining)]
#endif
public void BlockUpdate(byte[] input, int inOff, int len)
{
Check.DataLength(input, inOff, len, "input buffer too short");
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER || UNITY_2021_2_OR_NEWER
BlockUpdate(input.AsSpan(inOff, len));
#else
int available = BlockSize - currentBlockOffset;
if (len < available)
{
Array.Copy(input, inOff, currentBlock, currentBlockOffset, len);
currentBlockOffset += len;
return;
}
int pos = 0;
if (currentBlockOffset > 0)
{
Array.Copy(input, inOff, currentBlock, currentBlockOffset, available);
pos = available;
ProcessBlock(currentBlock, 0);
}
int remaining;
while ((remaining = len - pos) >= BlockSize)
{
ProcessBlock(input, inOff + pos);
pos += BlockSize;
}
Array.Copy(input, inOff + pos, currentBlock, 0, remaining);
currentBlockOffset = remaining;
#endif
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER || UNITY_2021_2_OR_NEWER
[MethodImpl(MethodImplOptions.AggressiveInlining)]
#if !UNITY_ANDROID || UNITY_EDITOR
unsafe
#endif
public void BlockUpdate(ReadOnlySpan input)
{
int available = BlockSize - currentBlockOffset;
if (input.Length < available)
{
input.CopyTo(currentBlock.AsSpan(currentBlockOffset));
currentBlockOffset += input.Length;
return;
}
int pos = 0;
if (currentBlockOffset > 0)
{
input[..available].CopyTo(currentBlock.AsSpan(currentBlockOffset));
pos = available;
ProcessBlock(currentBlock);
}
int remaining;
while ((remaining = input.Length - pos) >= BlockSize)
{
#if UNITY_ANDROID && !UNITY_EDITOR
uint t0 = System.Buffers.Binary.BinaryPrimitives.ReadUInt32LittleEndian(input[pos..]);
uint t1 = System.Buffers.Binary.BinaryPrimitives.ReadUInt32LittleEndian(input[(pos + 4)..]);
uint t2 = System.Buffers.Binary.BinaryPrimitives.ReadUInt32LittleEndian(input[(pos + 8)..]);
uint t3 = System.Buffers.Binary.BinaryPrimitives.ReadUInt32LittleEndian(input[(pos + 12)..]);
#else
uint t0 = 0;
uint t1 = 0;
uint t2 = 0;
uint t3 = 0;
fixed (byte* pblock = &input[pos])
{
uint* publock = (uint*)pblock;
t0 = publock[0];
t1 = publock[1];
t2 = publock[2];
t3 = publock[3];
}
#endif
h0 += t0 & 0x3ffffffU;
h1 += ((t1 << 6) | (t0 >> 26)) & 0x3ffffffU;
h2 += ((t2 << 12) | (t1 >> 20)) & 0x3ffffffU;
h3 += ((t3 << 18) | (t2 >> 14)) & 0x3ffffffU;
h4 += (1 << 24) | (t3 >> 8);
ulong tp0 = (ulong)h0 * r0 + (ulong)h1 * s4 + (ulong)h2 * s3 + (ulong)h3 * s2 + (ulong)h4 * s1;
ulong tp1 = (ulong)h0 * r1 + (ulong)h1 * r0 + (ulong)h2 * s4 + (ulong)h3 * s3 + (ulong)h4 * s2;
ulong tp2 = (ulong)h0 * r2 + (ulong)h1 * r1 + (ulong)h2 * r0 + (ulong)h3 * s4 + (ulong)h4 * s3;
ulong tp3 = (ulong)h0 * r3 + (ulong)h1 * r2 + (ulong)h2 * r1 + (ulong)h3 * r0 + (ulong)h4 * s4;
ulong tp4 = (ulong)h0 * r4 + (ulong)h1 * r3 + (ulong)h2 * r2 + (ulong)h3 * r1 + (ulong)h4 * r0;
h0 = (uint)tp0 & 0x3ffffff; tp1 += (tp0 >> 26);
h1 = (uint)tp1 & 0x3ffffff; tp2 += (tp1 >> 26);
h2 = (uint)tp2 & 0x3ffffff; tp3 += (tp2 >> 26);
h3 = (uint)tp3 & 0x3ffffff; tp4 += (tp3 >> 26);
h4 = (uint)tp4 & 0x3ffffff;
h0 += (uint)(tp4 >> 26) * 5;
h1 += h0 >> 26; h0 &= 0x3ffffff;
pos += BlockSize;
}
input[pos..].CopyTo(currentBlock);
currentBlockOffset = remaining;
}
#endif
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER || UNITY_2021_2_OR_NEWER
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private void ProcessBlock(ReadOnlySpan block)
{
uint t0 = System.Buffers.Binary.BinaryPrimitives.ReadUInt32LittleEndian(block);
uint t1 = System.Buffers.Binary.BinaryPrimitives.ReadUInt32LittleEndian(block[4..]);
uint t2 = System.Buffers.Binary.BinaryPrimitives.ReadUInt32LittleEndian(block[8..]);
uint t3 = System.Buffers.Binary.BinaryPrimitives.ReadUInt32LittleEndian(block[12..]);
#else
private void ProcessBlock(byte[] buf, int off)
{
uint t0 = Pack.LE_To_UInt32(buf, off + 0);
uint t1 = Pack.LE_To_UInt32(buf, off + 4);
uint t2 = Pack.LE_To_UInt32(buf, off + 8);
uint t3 = Pack.LE_To_UInt32(buf, off + 12);
#endif
h0 += t0 & 0x3ffffffU;
h1 += ((t1 << 6) | (t0 >> 26)) & 0x3ffffffU;
h2 += ((t2 << 12) | (t1 >> 20)) & 0x3ffffffU;
h3 += ((t3 << 18) | (t2 >> 14)) & 0x3ffffffU;
h4 += (1 << 24) | (t3 >> 8);
ulong tp0 = (ulong)h0 * r0 + (ulong)h1 * s4 + (ulong)h2 * s3 + (ulong)h3 * s2 + (ulong)h4 * s1;
ulong tp1 = (ulong)h0 * r1 + (ulong)h1 * r0 + (ulong)h2 * s4 + (ulong)h3 * s3 + (ulong)h4 * s2;
ulong tp2 = (ulong)h0 * r2 + (ulong)h1 * r1 + (ulong)h2 * r0 + (ulong)h3 * s4 + (ulong)h4 * s3;
ulong tp3 = (ulong)h0 * r3 + (ulong)h1 * r2 + (ulong)h2 * r1 + (ulong)h3 * r0 + (ulong)h4 * s4;
ulong tp4 = (ulong)h0 * r4 + (ulong)h1 * r3 + (ulong)h2 * r2 + (ulong)h3 * r1 + (ulong)h4 * r0;
h0 = (uint)tp0 & 0x3ffffff; tp1 += (tp0 >> 26);
h1 = (uint)tp1 & 0x3ffffff; tp2 += (tp1 >> 26);
h2 = (uint)tp2 & 0x3ffffff; tp3 += (tp2 >> 26);
h3 = (uint)tp3 & 0x3ffffff; tp4 += (tp3 >> 26);
h4 = (uint)tp4 & 0x3ffffff;
h0 += (uint)(tp4 >> 26) * 5;
h1 += h0 >> 26; h0 &= 0x3ffffff;
}
public int DoFinal(byte[] output, int outOff)
{
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER || UNITY_2021_2_OR_NEWER
return DoFinal(output.AsSpan(outOff));
#else
Check.OutputLength(output, outOff, BlockSize, "output buffer is too short.");
if (currentBlockOffset > 0)
{
// Process padded block
if (currentBlockOffset < BlockSize)
{
currentBlock[currentBlockOffset++] = 1;
while (currentBlockOffset < BlockSize)
{
currentBlock[currentBlockOffset++] = 0;
}
h4 -= (1 << 24);
}
ProcessBlock(currentBlock, 0);
}
UnityEngine.Debug.Assert(h4 >> 26 == 0);
//h0 += (h4 >> 26) * 5U + 5U; h4 &= 0x3ffffff;
h0 += 5U;
h1 += h0 >> 26; h0 &= 0x3ffffff;
h2 += h1 >> 26; h1 &= 0x3ffffff;
h3 += h2 >> 26; h2 &= 0x3ffffff;
h4 += h3 >> 26; h3 &= 0x3ffffff;
long c = ((int)(h4 >> 26) - 1) * 5;
c += (long)k0 + ((h0) | (h1 << 26));
Pack.UInt32_To_LE((uint)c, output, outOff); c >>= 32;
c += (long)k1 + ((h1 >> 6) | (h2 << 20));
Pack.UInt32_To_LE((uint)c, output, outOff + 4); c >>= 32;
c += (long)k2 + ((h2 >> 12) | (h3 << 14));
Pack.UInt32_To_LE((uint)c, output, outOff + 8); c >>= 32;
c += (long)k3 + ((h3 >> 18) | (h4 << 8));
Pack.UInt32_To_LE((uint)c, output, outOff + 12);
Reset();
return BlockSize;
#endif
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER || UNITY_2021_2_OR_NEWER
public int DoFinal(Span output)
{
Check.OutputLength(output, BlockSize, "output buffer is too short.");
if (currentBlockOffset > 0)
{
// Process padded block
if (currentBlockOffset < BlockSize)
{
currentBlock[currentBlockOffset++] = 1;
while (currentBlockOffset < BlockSize)
{
currentBlock[currentBlockOffset++] = 0;
}
h4 -= (1 << 24);
}
ProcessBlock(currentBlock);
}
UnityEngine.Debug.Assert(h4 >> 26 == 0);
//h0 += (h4 >> 26) * 5U + 5U; h4 &= 0x3ffffff;
h0 += 5U;
h1 += h0 >> 26; h0 &= 0x3ffffff;
h2 += h1 >> 26; h1 &= 0x3ffffff;
h3 += h2 >> 26; h2 &= 0x3ffffff;
h4 += h3 >> 26; h3 &= 0x3ffffff;
long c = ((int)(h4 >> 26) - 1) * 5;
c += (long)k0 + ((h0) | (h1 << 26));
Pack.UInt32_To_LE((uint)c, output); c >>= 32;
c += (long)k1 + ((h1 >> 6) | (h2 << 20));
Pack.UInt32_To_LE((uint)c, output[4..]); c >>= 32;
c += (long)k2 + ((h2 >> 12) | (h3 << 14));
Pack.UInt32_To_LE((uint)c, output[8..]); c >>= 32;
c += (long)k3 + ((h3 >> 18) | (h4 << 8));
Pack.UInt32_To_LE((uint)c, output[12..]);
Reset();
return BlockSize;
}
#endif
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Reset()
{
currentBlockOffset = 0;
h0 = h1 = h2 = h3 = h4 = 0;
}
}
}
#pragma warning restore
#endif