RC2Engine.cs 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433
  1. #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
  2. #pragma warning disable
  3. using System;
  4. using Best.HTTP.SecureProtocol.Org.BouncyCastle.Crypto.Parameters;
  5. using Best.HTTP.SecureProtocol.Org.BouncyCastle.Utilities;
  6. namespace Best.HTTP.SecureProtocol.Org.BouncyCastle.Crypto.Engines
  7. {
  8. /**
  9. * an implementation of RC2 as described in RFC 2268
  10. * "A Description of the RC2(r) Encryption Algorithm" R. Rivest.
  11. */
  12. public class RC2Engine
  13. : IBlockCipher
  14. {
  15. //
  16. // the values we use for key expansion (based on the digits of PI)
  17. //
  18. private static readonly byte[] piTable =
  19. {
  20. (byte)0xd9, (byte)0x78, (byte)0xf9, (byte)0xc4, (byte)0x19, (byte)0xdd, (byte)0xb5, (byte)0xed,
  21. (byte)0x28, (byte)0xe9, (byte)0xfd, (byte)0x79, (byte)0x4a, (byte)0xa0, (byte)0xd8, (byte)0x9d,
  22. (byte)0xc6, (byte)0x7e, (byte)0x37, (byte)0x83, (byte)0x2b, (byte)0x76, (byte)0x53, (byte)0x8e,
  23. (byte)0x62, (byte)0x4c, (byte)0x64, (byte)0x88, (byte)0x44, (byte)0x8b, (byte)0xfb, (byte)0xa2,
  24. (byte)0x17, (byte)0x9a, (byte)0x59, (byte)0xf5, (byte)0x87, (byte)0xb3, (byte)0x4f, (byte)0x13,
  25. (byte)0x61, (byte)0x45, (byte)0x6d, (byte)0x8d, (byte)0x9, (byte)0x81, (byte)0x7d, (byte)0x32,
  26. (byte)0xbd, (byte)0x8f, (byte)0x40, (byte)0xeb, (byte)0x86, (byte)0xb7, (byte)0x7b, (byte)0xb,
  27. (byte)0xf0, (byte)0x95, (byte)0x21, (byte)0x22, (byte)0x5c, (byte)0x6b, (byte)0x4e, (byte)0x82,
  28. (byte)0x54, (byte)0xd6, (byte)0x65, (byte)0x93, (byte)0xce, (byte)0x60, (byte)0xb2, (byte)0x1c,
  29. (byte)0x73, (byte)0x56, (byte)0xc0, (byte)0x14, (byte)0xa7, (byte)0x8c, (byte)0xf1, (byte)0xdc,
  30. (byte)0x12, (byte)0x75, (byte)0xca, (byte)0x1f, (byte)0x3b, (byte)0xbe, (byte)0xe4, (byte)0xd1,
  31. (byte)0x42, (byte)0x3d, (byte)0xd4, (byte)0x30, (byte)0xa3, (byte)0x3c, (byte)0xb6, (byte)0x26,
  32. (byte)0x6f, (byte)0xbf, (byte)0xe, (byte)0xda, (byte)0x46, (byte)0x69, (byte)0x7, (byte)0x57,
  33. (byte)0x27, (byte)0xf2, (byte)0x1d, (byte)0x9b, (byte)0xbc, (byte)0x94, (byte)0x43, (byte)0x3,
  34. (byte)0xf8, (byte)0x11, (byte)0xc7, (byte)0xf6, (byte)0x90, (byte)0xef, (byte)0x3e, (byte)0xe7,
  35. (byte)0x6, (byte)0xc3, (byte)0xd5, (byte)0x2f, (byte)0xc8, (byte)0x66, (byte)0x1e, (byte)0xd7,
  36. (byte)0x8, (byte)0xe8, (byte)0xea, (byte)0xde, (byte)0x80, (byte)0x52, (byte)0xee, (byte)0xf7,
  37. (byte)0x84, (byte)0xaa, (byte)0x72, (byte)0xac, (byte)0x35, (byte)0x4d, (byte)0x6a, (byte)0x2a,
  38. (byte)0x96, (byte)0x1a, (byte)0xd2, (byte)0x71, (byte)0x5a, (byte)0x15, (byte)0x49, (byte)0x74,
  39. (byte)0x4b, (byte)0x9f, (byte)0xd0, (byte)0x5e, (byte)0x4, (byte)0x18, (byte)0xa4, (byte)0xec,
  40. (byte)0xc2, (byte)0xe0, (byte)0x41, (byte)0x6e, (byte)0xf, (byte)0x51, (byte)0xcb, (byte)0xcc,
  41. (byte)0x24, (byte)0x91, (byte)0xaf, (byte)0x50, (byte)0xa1, (byte)0xf4, (byte)0x70, (byte)0x39,
  42. (byte)0x99, (byte)0x7c, (byte)0x3a, (byte)0x85, (byte)0x23, (byte)0xb8, (byte)0xb4, (byte)0x7a,
  43. (byte)0xfc, (byte)0x2, (byte)0x36, (byte)0x5b, (byte)0x25, (byte)0x55, (byte)0x97, (byte)0x31,
  44. (byte)0x2d, (byte)0x5d, (byte)0xfa, (byte)0x98, (byte)0xe3, (byte)0x8a, (byte)0x92, (byte)0xae,
  45. (byte)0x5, (byte)0xdf, (byte)0x29, (byte)0x10, (byte)0x67, (byte)0x6c, (byte)0xba, (byte)0xc9,
  46. (byte)0xd3, (byte)0x0, (byte)0xe6, (byte)0xcf, (byte)0xe1, (byte)0x9e, (byte)0xa8, (byte)0x2c,
  47. (byte)0x63, (byte)0x16, (byte)0x1, (byte)0x3f, (byte)0x58, (byte)0xe2, (byte)0x89, (byte)0xa9,
  48. (byte)0xd, (byte)0x38, (byte)0x34, (byte)0x1b, (byte)0xab, (byte)0x33, (byte)0xff, (byte)0xb0,
  49. (byte)0xbb, (byte)0x48, (byte)0xc, (byte)0x5f, (byte)0xb9, (byte)0xb1, (byte)0xcd, (byte)0x2e,
  50. (byte)0xc5, (byte)0xf3, (byte)0xdb, (byte)0x47, (byte)0xe5, (byte)0xa5, (byte)0x9c, (byte)0x77,
  51. (byte)0xa, (byte)0xa6, (byte)0x20, (byte)0x68, (byte)0xfe, (byte)0x7f, (byte)0xc1, (byte)0xad
  52. };
  53. private const int BLOCK_SIZE = 8;
  54. private int[] workingKey;
  55. private bool encrypting;
  56. private int[] GenerateWorkingKey(
  57. byte[] key,
  58. int bits)
  59. {
  60. int x;
  61. int[] xKey = new int[128];
  62. for (int i = 0; i != key.Length; i++)
  63. {
  64. xKey[i] = key[i] & 0xff;
  65. }
  66. // Phase 1: Expand input key to 128 bytes
  67. int len = key.Length;
  68. if (len < 128)
  69. {
  70. int index = 0;
  71. x = xKey[len - 1];
  72. do
  73. {
  74. x = piTable[(x + xKey[index++]) & 255] & 0xff;
  75. xKey[len++] = x;
  76. }
  77. while (len < 128);
  78. }
  79. // Phase 2 - reduce effective key size to "bits"
  80. len = (bits + 7) >> 3;
  81. x = piTable[xKey[128 - len] & (255 >> (7 & -bits))] & 0xff;
  82. xKey[128 - len] = x;
  83. for (int i = 128 - len - 1; i >= 0; i--)
  84. {
  85. x = piTable[x ^ xKey[i + len]] & 0xff;
  86. xKey[i] = x;
  87. }
  88. // Phase 3 - copy to newKey in little-endian order
  89. int[] newKey = new int[64];
  90. for (int i = 0; i != newKey.Length; i++)
  91. {
  92. newKey[i] = (xKey[2 * i] + (xKey[2 * i + 1] << 8));
  93. }
  94. return newKey;
  95. }
  96. /**
  97. * initialise a RC2 cipher.
  98. *
  99. * @param forEncryption whether or not we are for encryption.
  100. * @param parameters the parameters required to set up the cipher.
  101. * @exception ArgumentException if the parameters argument is
  102. * inappropriate.
  103. */
  104. public virtual void Init(
  105. bool forEncryption,
  106. ICipherParameters parameters)
  107. {
  108. this.encrypting = forEncryption;
  109. if (parameters is RC2Parameters)
  110. {
  111. RC2Parameters param = (RC2Parameters) parameters;
  112. workingKey = GenerateWorkingKey(param.GetKey(), param.EffectiveKeyBits);
  113. }
  114. else if (parameters is KeyParameter)
  115. {
  116. KeyParameter param = (KeyParameter) parameters;
  117. byte[] key = param.GetKey();
  118. workingKey = GenerateWorkingKey(key, key.Length * 8);
  119. }
  120. else
  121. {
  122. throw new ArgumentException("invalid parameter passed to RC2 init - " + Org.BouncyCastle.Utilities.Platform.GetTypeName(parameters));
  123. }
  124. }
  125. public virtual string AlgorithmName
  126. {
  127. get { return "RC2"; }
  128. }
  129. public virtual int GetBlockSize()
  130. {
  131. return BLOCK_SIZE;
  132. }
  133. public virtual int ProcessBlock(byte[] input, int inOff, byte[] output, int outOff)
  134. {
  135. if (workingKey == null)
  136. throw new InvalidOperationException("RC2 engine not initialised");
  137. Check.DataLength(input, inOff, BLOCK_SIZE, "input buffer too short");
  138. Check.OutputLength(output, outOff, BLOCK_SIZE, "output buffer too short");
  139. #if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER || UNITY_2021_2_OR_NEWER
  140. if (encrypting)
  141. {
  142. EncryptBlock(input.AsSpan(inOff), output.AsSpan(outOff));
  143. }
  144. else
  145. {
  146. DecryptBlock(input.AsSpan(inOff), output.AsSpan(outOff));
  147. }
  148. #else
  149. if (encrypting)
  150. {
  151. EncryptBlock(input, inOff, output, outOff);
  152. }
  153. else
  154. {
  155. DecryptBlock(input, inOff, output, outOff);
  156. }
  157. #endif
  158. return BLOCK_SIZE;
  159. }
  160. #if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER || UNITY_2021_2_OR_NEWER
  161. public virtual int ProcessBlock(ReadOnlySpan<byte> input, Span<byte> output)
  162. {
  163. if (workingKey == null)
  164. throw new InvalidOperationException("RC2 engine not initialised");
  165. Check.DataLength(input, BLOCK_SIZE, "input buffer too short");
  166. Check.OutputLength(output, BLOCK_SIZE, "output buffer too short");
  167. if (encrypting)
  168. {
  169. EncryptBlock(input, output);
  170. }
  171. else
  172. {
  173. DecryptBlock(input, output);
  174. }
  175. return BLOCK_SIZE;
  176. }
  177. #endif
  178. /**
  179. * return the result rotating the 16 bit number in x left by y
  180. */
  181. private static int RotateWordLeft(int x, int y)
  182. {
  183. x &= 0xffff;
  184. return (x << y) | (x >> (16 - y));
  185. }
  186. #if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER || UNITY_2021_2_OR_NEWER
  187. private void EncryptBlock(ReadOnlySpan<byte> input, Span<byte> output)
  188. {
  189. int x76, x54, x32, x10;
  190. x76 = ((input[7] & 0xff) << 8) + (input[6] & 0xff);
  191. x54 = ((input[5] & 0xff) << 8) + (input[4] & 0xff);
  192. x32 = ((input[3] & 0xff) << 8) + (input[2] & 0xff);
  193. x10 = ((input[1] & 0xff) << 8) + (input[0] & 0xff);
  194. for (int i = 0; i <= 16; i += 4)
  195. {
  196. x10 = RotateWordLeft(x10 + (x32 & ~x76) + (x54 & x76) + workingKey[i], 1);
  197. x32 = RotateWordLeft(x32 + (x54 & ~x10) + (x76 & x10) + workingKey[i + 1], 2);
  198. x54 = RotateWordLeft(x54 + (x76 & ~x32) + (x10 & x32) + workingKey[i + 2], 3);
  199. x76 = RotateWordLeft(x76 + (x10 & ~x54) + (x32 & x54) + workingKey[i + 3], 5);
  200. }
  201. x10 += workingKey[x76 & 63];
  202. x32 += workingKey[x10 & 63];
  203. x54 += workingKey[x32 & 63];
  204. x76 += workingKey[x54 & 63];
  205. for (int i = 20; i <= 40; i += 4)
  206. {
  207. x10 = RotateWordLeft(x10 + (x32 & ~x76) + (x54 & x76) + workingKey[i], 1);
  208. x32 = RotateWordLeft(x32 + (x54 & ~x10) + (x76 & x10) + workingKey[i + 1], 2);
  209. x54 = RotateWordLeft(x54 + (x76 & ~x32) + (x10 & x32) + workingKey[i + 2], 3);
  210. x76 = RotateWordLeft(x76 + (x10 & ~x54) + (x32 & x54) + workingKey[i + 3], 5);
  211. }
  212. x10 += workingKey[x76 & 63];
  213. x32 += workingKey[x10 & 63];
  214. x54 += workingKey[x32 & 63];
  215. x76 += workingKey[x54 & 63];
  216. for (int i = 44; i < 64; i += 4)
  217. {
  218. x10 = RotateWordLeft(x10 + (x32 & ~x76) + (x54 & x76) + workingKey[i], 1);
  219. x32 = RotateWordLeft(x32 + (x54 & ~x10) + (x76 & x10) + workingKey[i + 1], 2);
  220. x54 = RotateWordLeft(x54 + (x76 & ~x32) + (x10 & x32) + workingKey[i + 2], 3);
  221. x76 = RotateWordLeft(x76 + (x10 & ~x54) + (x32 & x54) + workingKey[i + 3], 5);
  222. }
  223. output[0] = (byte)x10;
  224. output[1] = (byte)(x10 >> 8);
  225. output[2] = (byte)x32;
  226. output[3] = (byte)(x32 >> 8);
  227. output[4] = (byte)x54;
  228. output[5] = (byte)(x54 >> 8);
  229. output[6] = (byte)x76;
  230. output[7] = (byte)(x76 >> 8);
  231. }
  232. private void DecryptBlock(ReadOnlySpan<byte> input, Span<byte> output)
  233. {
  234. int x76, x54, x32, x10;
  235. x76 = ((input[7] & 0xff) << 8) + (input[6] & 0xff);
  236. x54 = ((input[5] & 0xff) << 8) + (input[4] & 0xff);
  237. x32 = ((input[3] & 0xff) << 8) + (input[2] & 0xff);
  238. x10 = ((input[1] & 0xff) << 8) + (input[0] & 0xff);
  239. for (int i = 60; i >= 44; i -= 4)
  240. {
  241. x76 = RotateWordLeft(x76, 11) - ((x10 & ~x54) + (x32 & x54) + workingKey[i + 3]);
  242. x54 = RotateWordLeft(x54, 13) - ((x76 & ~x32) + (x10 & x32) + workingKey[i + 2]);
  243. x32 = RotateWordLeft(x32, 14) - ((x54 & ~x10) + (x76 & x10) + workingKey[i + 1]);
  244. x10 = RotateWordLeft(x10, 15) - ((x32 & ~x76) + (x54 & x76) + workingKey[i]);
  245. }
  246. x76 -= workingKey[x54 & 63];
  247. x54 -= workingKey[x32 & 63];
  248. x32 -= workingKey[x10 & 63];
  249. x10 -= workingKey[x76 & 63];
  250. for (int i = 40; i >= 20; i -= 4)
  251. {
  252. x76 = RotateWordLeft(x76, 11) - ((x10 & ~x54) + (x32 & x54) + workingKey[i + 3]);
  253. x54 = RotateWordLeft(x54, 13) - ((x76 & ~x32) + (x10 & x32) + workingKey[i + 2]);
  254. x32 = RotateWordLeft(x32, 14) - ((x54 & ~x10) + (x76 & x10) + workingKey[i + 1]);
  255. x10 = RotateWordLeft(x10, 15) - ((x32 & ~x76) + (x54 & x76) + workingKey[i]);
  256. }
  257. x76 -= workingKey[x54 & 63];
  258. x54 -= workingKey[x32 & 63];
  259. x32 -= workingKey[x10 & 63];
  260. x10 -= workingKey[x76 & 63];
  261. for (int i = 16; i >= 0; i -= 4)
  262. {
  263. x76 = RotateWordLeft(x76, 11) - ((x10 & ~x54) + (x32 & x54) + workingKey[i + 3]);
  264. x54 = RotateWordLeft(x54, 13) - ((x76 & ~x32) + (x10 & x32) + workingKey[i + 2]);
  265. x32 = RotateWordLeft(x32, 14) - ((x54 & ~x10) + (x76 & x10) + workingKey[i + 1]);
  266. x10 = RotateWordLeft(x10, 15) - ((x32 & ~x76) + (x54 & x76) + workingKey[i]);
  267. }
  268. output[0] = (byte)x10;
  269. output[1] = (byte)(x10 >> 8);
  270. output[2] = (byte)x32;
  271. output[3] = (byte)(x32 >> 8);
  272. output[4] = (byte)x54;
  273. output[5] = (byte)(x54 >> 8);
  274. output[6] = (byte)x76;
  275. output[7] = (byte)(x76 >> 8);
  276. }
  277. #else
  278. private void EncryptBlock(byte[] input, int inOff, byte[] outBytes, int outOff)
  279. {
  280. int x76, x54, x32, x10;
  281. x76 = ((input[inOff + 7] & 0xff) << 8) + (input[inOff + 6] & 0xff);
  282. x54 = ((input[inOff + 5] & 0xff) << 8) + (input[inOff + 4] & 0xff);
  283. x32 = ((input[inOff + 3] & 0xff) << 8) + (input[inOff + 2] & 0xff);
  284. x10 = ((input[inOff + 1] & 0xff) << 8) + (input[inOff + 0] & 0xff);
  285. for (int i = 0; i <= 16; i += 4)
  286. {
  287. x10 = RotateWordLeft(x10 + (x32 & ~x76) + (x54 & x76) + workingKey[i ], 1);
  288. x32 = RotateWordLeft(x32 + (x54 & ~x10) + (x76 & x10) + workingKey[i+1], 2);
  289. x54 = RotateWordLeft(x54 + (x76 & ~x32) + (x10 & x32) + workingKey[i+2], 3);
  290. x76 = RotateWordLeft(x76 + (x10 & ~x54) + (x32 & x54) + workingKey[i+3], 5);
  291. }
  292. x10 += workingKey[x76 & 63];
  293. x32 += workingKey[x10 & 63];
  294. x54 += workingKey[x32 & 63];
  295. x76 += workingKey[x54 & 63];
  296. for (int i = 20; i <= 40; i += 4)
  297. {
  298. x10 = RotateWordLeft(x10 + (x32 & ~x76) + (x54 & x76) + workingKey[i ], 1);
  299. x32 = RotateWordLeft(x32 + (x54 & ~x10) + (x76 & x10) + workingKey[i+1], 2);
  300. x54 = RotateWordLeft(x54 + (x76 & ~x32) + (x10 & x32) + workingKey[i+2], 3);
  301. x76 = RotateWordLeft(x76 + (x10 & ~x54) + (x32 & x54) + workingKey[i+3], 5);
  302. }
  303. x10 += workingKey[x76 & 63];
  304. x32 += workingKey[x10 & 63];
  305. x54 += workingKey[x32 & 63];
  306. x76 += workingKey[x54 & 63];
  307. for (int i = 44; i < 64; i += 4)
  308. {
  309. x10 = RotateWordLeft(x10 + (x32 & ~x76) + (x54 & x76) + workingKey[i ], 1);
  310. x32 = RotateWordLeft(x32 + (x54 & ~x10) + (x76 & x10) + workingKey[i+1], 2);
  311. x54 = RotateWordLeft(x54 + (x76 & ~x32) + (x10 & x32) + workingKey[i+2], 3);
  312. x76 = RotateWordLeft(x76 + (x10 & ~x54) + (x32 & x54) + workingKey[i+3], 5);
  313. }
  314. outBytes[outOff + 0] = (byte)x10;
  315. outBytes[outOff + 1] = (byte)(x10 >> 8);
  316. outBytes[outOff + 2] = (byte)x32;
  317. outBytes[outOff + 3] = (byte)(x32 >> 8);
  318. outBytes[outOff + 4] = (byte)x54;
  319. outBytes[outOff + 5] = (byte)(x54 >> 8);
  320. outBytes[outOff + 6] = (byte)x76;
  321. outBytes[outOff + 7] = (byte)(x76 >> 8);
  322. }
  323. private void DecryptBlock(byte[] input, int inOff, byte[] outBytes, int outOff)
  324. {
  325. int x76, x54, x32, x10;
  326. x76 = ((input[inOff + 7] & 0xff) << 8) + (input[inOff + 6] & 0xff);
  327. x54 = ((input[inOff + 5] & 0xff) << 8) + (input[inOff + 4] & 0xff);
  328. x32 = ((input[inOff + 3] & 0xff) << 8) + (input[inOff + 2] & 0xff);
  329. x10 = ((input[inOff + 1] & 0xff) << 8) + (input[inOff + 0] & 0xff);
  330. for (int i = 60; i >= 44; i -= 4)
  331. {
  332. x76 = RotateWordLeft(x76, 11) - ((x10 & ~x54) + (x32 & x54) + workingKey[i+3]);
  333. x54 = RotateWordLeft(x54, 13) - ((x76 & ~x32) + (x10 & x32) + workingKey[i+2]);
  334. x32 = RotateWordLeft(x32, 14) - ((x54 & ~x10) + (x76 & x10) + workingKey[i+1]);
  335. x10 = RotateWordLeft(x10, 15) - ((x32 & ~x76) + (x54 & x76) + workingKey[i ]);
  336. }
  337. x76 -= workingKey[x54 & 63];
  338. x54 -= workingKey[x32 & 63];
  339. x32 -= workingKey[x10 & 63];
  340. x10 -= workingKey[x76 & 63];
  341. for (int i = 40; i >= 20; i -= 4)
  342. {
  343. x76 = RotateWordLeft(x76, 11) - ((x10 & ~x54) + (x32 & x54) + workingKey[i+3]);
  344. x54 = RotateWordLeft(x54, 13) - ((x76 & ~x32) + (x10 & x32) + workingKey[i+2]);
  345. x32 = RotateWordLeft(x32, 14) - ((x54 & ~x10) + (x76 & x10) + workingKey[i+1]);
  346. x10 = RotateWordLeft(x10, 15) - ((x32 & ~x76) + (x54 & x76) + workingKey[i ]);
  347. }
  348. x76 -= workingKey[x54 & 63];
  349. x54 -= workingKey[x32 & 63];
  350. x32 -= workingKey[x10 & 63];
  351. x10 -= workingKey[x76 & 63];
  352. for (int i = 16; i >= 0; i -= 4)
  353. {
  354. x76 = RotateWordLeft(x76, 11) - ((x10 & ~x54) + (x32 & x54) + workingKey[i+3]);
  355. x54 = RotateWordLeft(x54, 13) - ((x76 & ~x32) + (x10 & x32) + workingKey[i+2]);
  356. x32 = RotateWordLeft(x32, 14) - ((x54 & ~x10) + (x76 & x10) + workingKey[i+1]);
  357. x10 = RotateWordLeft(x10, 15) - ((x32 & ~x76) + (x54 & x76) + workingKey[i ]);
  358. }
  359. outBytes[outOff + 0] = (byte)x10;
  360. outBytes[outOff + 1] = (byte)(x10 >> 8);
  361. outBytes[outOff + 2] = (byte)x32;
  362. outBytes[outOff + 3] = (byte)(x32 >> 8);
  363. outBytes[outOff + 4] = (byte)x54;
  364. outBytes[outOff + 5] = (byte)(x54 >> 8);
  365. outBytes[outOff + 6] = (byte)x76;
  366. outBytes[outOff + 7] = (byte)(x76 >> 8);
  367. }
  368. #endif
  369. }
  370. }
  371. #pragma warning restore
  372. #endif