SkipjackEngine.cs 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
  2. #pragma warning disable
  3. using System;
  4. using Best.HTTP.SecureProtocol.Org.BouncyCastle.Crypto.Parameters;
  5. using Best.HTTP.SecureProtocol.Org.BouncyCastle.Utilities;
  6. namespace Best.HTTP.SecureProtocol.Org.BouncyCastle.Crypto.Engines
  7. {
  8. /**
  9. * a class that provides a basic SKIPJACK engine.
  10. */
  11. public sealed class SkipjackEngine
  12. : IBlockCipher
  13. {
  14. private const int BLOCK_SIZE = 8;
  15. private static readonly short[] ftable =
  16. {
  17. 0xa3, 0xd7, 0x09, 0x83, 0xf8, 0x48, 0xf6, 0xf4, 0xb3, 0x21, 0x15, 0x78, 0x99, 0xb1, 0xaf, 0xf9,
  18. 0xe7, 0x2d, 0x4d, 0x8a, 0xce, 0x4c, 0xca, 0x2e, 0x52, 0x95, 0xd9, 0x1e, 0x4e, 0x38, 0x44, 0x28,
  19. 0x0a, 0xdf, 0x02, 0xa0, 0x17, 0xf1, 0x60, 0x68, 0x12, 0xb7, 0x7a, 0xc3, 0xe9, 0xfa, 0x3d, 0x53,
  20. 0x96, 0x84, 0x6b, 0xba, 0xf2, 0x63, 0x9a, 0x19, 0x7c, 0xae, 0xe5, 0xf5, 0xf7, 0x16, 0x6a, 0xa2,
  21. 0x39, 0xb6, 0x7b, 0x0f, 0xc1, 0x93, 0x81, 0x1b, 0xee, 0xb4, 0x1a, 0xea, 0xd0, 0x91, 0x2f, 0xb8,
  22. 0x55, 0xb9, 0xda, 0x85, 0x3f, 0x41, 0xbf, 0xe0, 0x5a, 0x58, 0x80, 0x5f, 0x66, 0x0b, 0xd8, 0x90,
  23. 0x35, 0xd5, 0xc0, 0xa7, 0x33, 0x06, 0x65, 0x69, 0x45, 0x00, 0x94, 0x56, 0x6d, 0x98, 0x9b, 0x76,
  24. 0x97, 0xfc, 0xb2, 0xc2, 0xb0, 0xfe, 0xdb, 0x20, 0xe1, 0xeb, 0xd6, 0xe4, 0xdd, 0x47, 0x4a, 0x1d,
  25. 0x42, 0xed, 0x9e, 0x6e, 0x49, 0x3c, 0xcd, 0x43, 0x27, 0xd2, 0x07, 0xd4, 0xde, 0xc7, 0x67, 0x18,
  26. 0x89, 0xcb, 0x30, 0x1f, 0x8d, 0xc6, 0x8f, 0xaa, 0xc8, 0x74, 0xdc, 0xc9, 0x5d, 0x5c, 0x31, 0xa4,
  27. 0x70, 0x88, 0x61, 0x2c, 0x9f, 0x0d, 0x2b, 0x87, 0x50, 0x82, 0x54, 0x64, 0x26, 0x7d, 0x03, 0x40,
  28. 0x34, 0x4b, 0x1c, 0x73, 0xd1, 0xc4, 0xfd, 0x3b, 0xcc, 0xfb, 0x7f, 0xab, 0xe6, 0x3e, 0x5b, 0xa5,
  29. 0xad, 0x04, 0x23, 0x9c, 0x14, 0x51, 0x22, 0xf0, 0x29, 0x79, 0x71, 0x7e, 0xff, 0x8c, 0x0e, 0xe2,
  30. 0x0c, 0xef, 0xbc, 0x72, 0x75, 0x6f, 0x37, 0xa1, 0xec, 0xd3, 0x8e, 0x62, 0x8b, 0x86, 0x10, 0xe8,
  31. 0x08, 0x77, 0x11, 0xbe, 0x92, 0x4f, 0x24, 0xc5, 0x32, 0x36, 0x9d, 0xcf, 0xf3, 0xa6, 0xbb, 0xac,
  32. 0x5e, 0x6c, 0xa9, 0x13, 0x57, 0x25, 0xb5, 0xe3, 0xbd, 0xa8, 0x3a, 0x01, 0x05, 0x59, 0x2a, 0x46
  33. };
  34. private int[] key0, key1, key2, key3;
  35. private bool encrypting;
  36. /**
  37. * initialise a SKIPJACK cipher.
  38. *
  39. * @param forEncryption whether or not we are for encryption.
  40. * @param parameters the parameters required to set up the cipher.
  41. * @exception ArgumentException if the parameters argument is
  42. * inappropriate.
  43. */
  44. public void Init(bool forEncryption, ICipherParameters parameters)
  45. {
  46. if (!(parameters is KeyParameter keyParameter))
  47. throw new ArgumentException("invalid parameter passed to SKIPJACK init - " + Org.BouncyCastle.Utilities.Platform.GetTypeName(parameters));
  48. byte[] keyBytes = keyParameter.GetKey();
  49. this.encrypting = forEncryption;
  50. this.key0 = new int[32];
  51. this.key1 = new int[32];
  52. this.key2 = new int[32];
  53. this.key3 = new int[32];
  54. //
  55. // expand the key to 128 bytes in 4 parts (saving us a modulo, multiply
  56. // and an addition).
  57. //
  58. for (int i = 0; i < 32; i++)
  59. {
  60. key0[i] = keyBytes[(i * 4 + 0) % 10];
  61. key1[i] = keyBytes[(i * 4 + 1) % 10];
  62. key2[i] = keyBytes[(i * 4 + 2) % 10];
  63. key3[i] = keyBytes[(i * 4 + 3) % 10];
  64. }
  65. }
  66. public string AlgorithmName
  67. {
  68. get { return "SKIPJACK"; }
  69. }
  70. public int GetBlockSize()
  71. {
  72. return BLOCK_SIZE;
  73. }
  74. public int ProcessBlock(byte[] input, int inOff, byte[] output, int outOff)
  75. {
  76. if (key1 == null)
  77. throw new InvalidOperationException("SKIPJACK engine not initialised");
  78. Check.DataLength(input, inOff, BLOCK_SIZE, "input buffer too short");
  79. Check.OutputLength(output, outOff, BLOCK_SIZE, "output buffer too short");
  80. #if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER || UNITY_2021_2_OR_NEWER
  81. if (encrypting)
  82. {
  83. EncryptBlock(input.AsSpan(inOff), output.AsSpan(outOff));
  84. }
  85. else
  86. {
  87. DecryptBlock(input.AsSpan(inOff), output.AsSpan(outOff));
  88. }
  89. #else
  90. if (encrypting)
  91. {
  92. EncryptBlock(input, inOff, output, outOff);
  93. }
  94. else
  95. {
  96. DecryptBlock(input, inOff, output, outOff);
  97. }
  98. #endif
  99. return BLOCK_SIZE;
  100. }
  101. #if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER || UNITY_2021_2_OR_NEWER
  102. public int ProcessBlock(ReadOnlySpan<byte> input, Span<byte> output)
  103. {
  104. if (key1 == null)
  105. throw new InvalidOperationException("SKIPJACK engine not initialised");
  106. Check.DataLength(input, BLOCK_SIZE, "input buffer too short");
  107. Check.OutputLength(output, BLOCK_SIZE, "output buffer too short");
  108. if (encrypting)
  109. {
  110. EncryptBlock(input, output);
  111. }
  112. else
  113. {
  114. DecryptBlock(input, output);
  115. }
  116. return BLOCK_SIZE;
  117. }
  118. #endif
  119. /**
  120. * The G permutation
  121. */
  122. private int G(
  123. int k,
  124. int w)
  125. {
  126. int g1, g2, g3, g4, g5, g6;
  127. g1 = (w >> 8) & 0xff;
  128. g2 = w & 0xff;
  129. g3 = ftable[g2 ^ key0[k]] ^ g1;
  130. g4 = ftable[g3 ^ key1[k]] ^ g2;
  131. g5 = ftable[g4 ^ key2[k]] ^ g3;
  132. g6 = ftable[g5 ^ key3[k]] ^ g4;
  133. return ((g5 << 8) + g6);
  134. }
  135. #if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER || UNITY_2021_2_OR_NEWER
  136. private int EncryptBlock(ReadOnlySpan<byte> input, Span<byte> output)
  137. {
  138. int w1 = (input[0] << 8) + (input[1] & 0xff);
  139. int w2 = (input[2] << 8) + (input[3] & 0xff);
  140. int w3 = (input[4] << 8) + (input[5] & 0xff);
  141. int w4 = (input[6] << 8) + (input[7] & 0xff);
  142. int k = 0;
  143. for (int t = 0; t < 2; t++)
  144. {
  145. for (int i = 0; i < 8; i++)
  146. {
  147. int tmp = w4;
  148. w4 = w3;
  149. w3 = w2;
  150. w2 = G(k, w1);
  151. w1 = w2 ^ tmp ^ (k + 1);
  152. k++;
  153. }
  154. for (int i = 0; i < 8; i++)
  155. {
  156. int tmp = w4;
  157. w4 = w3;
  158. w3 = w1 ^ w2 ^ (k + 1);
  159. w2 = G(k, w1);
  160. w1 = tmp;
  161. k++;
  162. }
  163. }
  164. output[0] = (byte)((w1 >> 8));
  165. output[1] = (byte)(w1);
  166. output[2] = (byte)((w2 >> 8));
  167. output[3] = (byte)(w2);
  168. output[4] = (byte)((w3 >> 8));
  169. output[5] = (byte)(w3);
  170. output[6] = (byte)((w4 >> 8));
  171. output[7] = (byte)(w4);
  172. return BLOCK_SIZE;
  173. }
  174. private int DecryptBlock(ReadOnlySpan<byte> input, Span<byte> output)
  175. {
  176. int w2 = (input[0] << 8) + (input[1] & 0xff);
  177. int w1 = (input[2] << 8) + (input[3] & 0xff);
  178. int w4 = (input[4] << 8) + (input[5] & 0xff);
  179. int w3 = (input[6] << 8) + (input[7] & 0xff);
  180. int k = 31;
  181. for (int t = 0; t < 2; t++)
  182. {
  183. for (int i = 0; i < 8; i++)
  184. {
  185. int tmp = w4;
  186. w4 = w3;
  187. w3 = w2;
  188. w2 = H(k, w1);
  189. w1 = w2 ^ tmp ^ (k + 1);
  190. k--;
  191. }
  192. for (int i = 0; i < 8; i++)
  193. {
  194. int tmp = w4;
  195. w4 = w3;
  196. w3 = w1 ^ w2 ^ (k + 1);
  197. w2 = H(k, w1);
  198. w1 = tmp;
  199. k--;
  200. }
  201. }
  202. output[0] = (byte)((w2 >> 8));
  203. output[1] = (byte)(w2);
  204. output[2] = (byte)((w1 >> 8));
  205. output[3] = (byte)(w1);
  206. output[4] = (byte)((w4 >> 8));
  207. output[5] = (byte)(w4);
  208. output[6] = (byte)((w3 >> 8));
  209. output[7] = (byte)(w3);
  210. return BLOCK_SIZE;
  211. }
  212. #else
  213. private int EncryptBlock(byte[] input, int inOff, byte[] outBytes, int outOff)
  214. {
  215. int w1 = (input[inOff + 0] << 8) + (input[inOff + 1] & 0xff);
  216. int w2 = (input[inOff + 2] << 8) + (input[inOff + 3] & 0xff);
  217. int w3 = (input[inOff + 4] << 8) + (input[inOff + 5] & 0xff);
  218. int w4 = (input[inOff + 6] << 8) + (input[inOff + 7] & 0xff);
  219. int k = 0;
  220. for (int t = 0; t < 2; t++)
  221. {
  222. for(int i = 0; i < 8; i++)
  223. {
  224. int tmp = w4;
  225. w4 = w3;
  226. w3 = w2;
  227. w2 = G(k, w1);
  228. w1 = w2 ^ tmp ^ (k + 1);
  229. k++;
  230. }
  231. for(int i = 0; i < 8; i++)
  232. {
  233. int tmp = w4;
  234. w4 = w3;
  235. w3 = w1 ^ w2 ^ (k + 1);
  236. w2 = G(k, w1);
  237. w1 = tmp;
  238. k++;
  239. }
  240. }
  241. outBytes[outOff + 0] = (byte)((w1 >> 8));
  242. outBytes[outOff + 1] = (byte)(w1);
  243. outBytes[outOff + 2] = (byte)((w2 >> 8));
  244. outBytes[outOff + 3] = (byte)(w2);
  245. outBytes[outOff + 4] = (byte)((w3 >> 8));
  246. outBytes[outOff + 5] = (byte)(w3);
  247. outBytes[outOff + 6] = (byte)((w4 >> 8));
  248. outBytes[outOff + 7] = (byte)(w4);
  249. return BLOCK_SIZE;
  250. }
  251. private int DecryptBlock(byte[] input, int inOff, byte[] outBytes, int outOff)
  252. {
  253. int w2 = (input[inOff + 0] << 8) + (input[inOff + 1] & 0xff);
  254. int w1 = (input[inOff + 2] << 8) + (input[inOff + 3] & 0xff);
  255. int w4 = (input[inOff + 4] << 8) + (input[inOff + 5] & 0xff);
  256. int w3 = (input[inOff + 6] << 8) + (input[inOff + 7] & 0xff);
  257. int k = 31;
  258. for (int t = 0; t < 2; t++)
  259. {
  260. for (int i = 0; i < 8; i++)
  261. {
  262. int tmp = w4;
  263. w4 = w3;
  264. w3 = w2;
  265. w2 = H(k, w1);
  266. w1 = w2 ^ tmp ^ (k + 1);
  267. k--;
  268. }
  269. for (int i = 0; i < 8; i++)
  270. {
  271. int tmp = w4;
  272. w4 = w3;
  273. w3 = w1 ^ w2 ^ (k + 1);
  274. w2 = H(k, w1);
  275. w1 = tmp;
  276. k--;
  277. }
  278. }
  279. outBytes[outOff + 0] = (byte)((w2 >> 8));
  280. outBytes[outOff + 1] = (byte)(w2);
  281. outBytes[outOff + 2] = (byte)((w1 >> 8));
  282. outBytes[outOff + 3] = (byte)(w1);
  283. outBytes[outOff + 4] = (byte)((w4 >> 8));
  284. outBytes[outOff + 5] = (byte)(w4);
  285. outBytes[outOff + 6] = (byte)((w3 >> 8));
  286. outBytes[outOff + 7] = (byte)(w3);
  287. return BLOCK_SIZE;
  288. }
  289. #endif
  290. /**
  291. * the inverse of the G permutation.
  292. */
  293. private int H(int k, int w)
  294. {
  295. int h1 = w & 0xff;
  296. int h2 = (w >> 8) & 0xff;
  297. int h3 = ftable[h2 ^ key3[k]] ^ h1;
  298. int h4 = ftable[h3 ^ key2[k]] ^ h2;
  299. int h5 = ftable[h4 ^ key1[k]] ^ h3;
  300. int h6 = ftable[h5 ^ key0[k]] ^ h4;
  301. return (h6 << 8) + h5;
  302. }
  303. }
  304. }
  305. #pragma warning restore
  306. #endif