12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430 |
- #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
- #pragma warning disable
- using System;
- using Best.HTTP.SecureProtocol.Org.BouncyCastle.Crypto.Parameters;
- using Best.HTTP.SecureProtocol.Org.BouncyCastle.Crypto.Utilities;
- using Best.HTTP.SecureProtocol.Org.BouncyCastle.Utilities;
- using Best.HTTP.SecureProtocol.Org.BouncyCastle.Utilities.Encoders;
- namespace Best.HTTP.SecureProtocol.Org.BouncyCastle.Crypto.Engines
- {
- /// <summary>
- /// Implementation of the Threefish tweakable large block cipher in 256, 512 and 1024 bit block
- /// sizes.
- /// </summary>
- /// <remarks>
- /// This is the 1.3 version of Threefish defined in the Skein hash function submission to the NIST
- /// SHA-3 competition in October 2010.
- /// <p/>
- /// Threefish was designed by Niels Ferguson - Stefan Lucks - Bruce Schneier - Doug Whiting - Mihir
- /// Bellare - Tadayoshi Kohno - Jon Callas - Jesse Walker.
- /// <p/>
- /// This implementation inlines all round functions, unrolls 8 rounds, and uses 1.2k of static tables
- /// to speed up key schedule injection. <br/>
- /// 2 x block size state is retained by each cipher instance.
- /// </remarks>
- public class ThreefishEngine
- : IBlockCipher
- {
- /// <summary>
- /// 256 bit block size - Threefish-256
- /// </summary>
- public const int BLOCKSIZE_256 = 256;
- /// <summary>
- /// 512 bit block size - Threefish-512
- /// </summary>
- public const int BLOCKSIZE_512 = 512;
- /// <summary>
- /// 1024 bit block size - Threefish-1024
- /// </summary>
- public const int BLOCKSIZE_1024 = 1024;
- /**
- * Size of the tweak in bytes (always 128 bit/16 bytes)
- */
- private const int TWEAK_SIZE_BYTES = 16;
- private const int TWEAK_SIZE_WORDS = TWEAK_SIZE_BYTES / 8;
- /**
- * Rounds in Threefish-256
- */
- private const int ROUNDS_256 = 72;
- /**
- * Rounds in Threefish-512
- */
- private const int ROUNDS_512 = 72;
- /**
- * Rounds in Threefish-1024
- */
- private const int ROUNDS_1024 = 80;
- /**
- * Max rounds of any of the variants
- */
- private const int MAX_ROUNDS = ROUNDS_1024;
- /**
- * Key schedule parity constant
- */
- private const ulong C_240 = 0x1BD11BDAA9FC1A22L;
- /* Pre-calculated modulo arithmetic tables for key schedule lookups */
- private static readonly int[] MOD9 = new int[MAX_ROUNDS];
- private static readonly int[] MOD17 = new int[MOD9.Length];
- private static readonly int[] MOD5 = new int[MOD9.Length];
- private static readonly int[] MOD3 = new int[MOD9.Length];
- static ThreefishEngine()
- {
- for (int i = 0; i < MOD9.Length; i++)
- {
- MOD17[i] = i % 17;
- MOD9[i] = i % 9;
- MOD5[i] = i % 5;
- MOD3[i] = i % 3;
- }
- }
- /**
- * Block size in bytes
- */
- private readonly int blocksizeBytes;
- /**
- * Block size in 64 bit words
- */
- private readonly int blocksizeWords;
- /**
- * Buffer for byte oriented processBytes to call internal word API
- */
- private readonly ulong[] currentBlock;
- /**
- * Tweak bytes (2 byte t1,t2, calculated t3 and repeat of t1,t2 for modulo free lookup
- */
- private readonly ulong[] t = new ulong[5];
- /**
- * Key schedule words
- */
- private readonly ulong[] kw;
- /**
- * The internal cipher implementation (varies by blocksize)
- */
- private readonly ThreefishCipher cipher;
- private bool forEncryption;
- /// <summary>
- /// Constructs a new Threefish cipher, with a specified block size.
- /// </summary>
- /// <param name="blocksizeBits">the block size in bits, one of <see cref="BLOCKSIZE_256"/>, <see cref="BLOCKSIZE_512"/>,
- /// <see cref="BLOCKSIZE_1024"/> .</param>
- public ThreefishEngine(int blocksizeBits)
- {
- this.blocksizeBytes = (blocksizeBits / 8);
- this.blocksizeWords = (this.blocksizeBytes / 8);
- this.currentBlock = new ulong[blocksizeWords];
- /*
- * Provide room for original key words, extended key word and repeat of key words for modulo
- * free lookup of key schedule words.
- */
- this.kw = new ulong[2 * blocksizeWords + 1];
- switch (blocksizeBits)
- {
- case BLOCKSIZE_256:
- cipher = new Threefish256Cipher(kw, t);
- break;
- case BLOCKSIZE_512:
- cipher = new Threefish512Cipher(kw, t);
- break;
- case BLOCKSIZE_1024:
- cipher = new Threefish1024Cipher(kw, t);
- break;
- default:
- throw new ArgumentException("Invalid blocksize - Threefish is defined with block size of 256, 512, or 1024 bits");
- }
- }
- /// <summary>
- /// Initialise the engine.
- /// </summary>
- /// <param name="forEncryption">Initialise for encryption if true, for decryption if false.</param>
- /// <param name="parameters">an instance of <see cref="TweakableBlockCipherParameters"/> or <see cref="KeyParameter"/> (to
- /// use a 0 tweak)</param>
- public virtual void Init(bool forEncryption, ICipherParameters parameters)
- {
- byte[] keyBytes;
- byte[] tweakBytes;
- if (parameters is TweakableBlockCipherParameters)
- {
- TweakableBlockCipherParameters tParams = (TweakableBlockCipherParameters)parameters;
- keyBytes = tParams.Key.GetKey();
- tweakBytes = tParams.Tweak;
- }
- else if (parameters is KeyParameter)
- {
- keyBytes = ((KeyParameter)parameters).GetKey();
- tweakBytes = null;
- }
- else
- {
- throw new ArgumentException("Invalid parameter passed to Threefish init - "
- + Org.BouncyCastle.Utilities.Platform.GetTypeName(parameters));
- }
- ulong[] keyWords = null;
- ulong[] tweakWords = null;
- if (keyBytes != null)
- {
- if (keyBytes.Length != this.blocksizeBytes)
- {
- throw new ArgumentException("Threefish key must be same size as block (" + blocksizeBytes
- + " bytes)");
- }
- keyWords = new ulong[blocksizeWords];
- Pack.LE_To_UInt64(keyBytes, 0, keyWords);
- }
- if (tweakBytes != null)
- {
- if (tweakBytes.Length != TWEAK_SIZE_BYTES)
- {
- throw new ArgumentException("Threefish tweak must be " + TWEAK_SIZE_BYTES + " bytes");
- }
- tweakWords = new ulong[2];
- Pack.LE_To_UInt64(tweakBytes, 0, tweakWords);
- }
- Init(forEncryption, keyWords, tweakWords);
- }
- /// <summary>
- /// Initialise the engine, specifying the key and tweak directly.
- /// </summary>
- /// <param name="forEncryption">the cipher mode.</param>
- /// <param name="key">the words of the key, or <code>null</code> to use the current key.</param>
- /// <param name="tweak">the 2 word (128 bit) tweak, or <code>null</code> to use the current tweak.</param>
- internal void Init(bool forEncryption, ulong[] key, ulong[] tweak)
- {
- this.forEncryption = forEncryption;
- if (key != null)
- {
- SetKey(key);
- }
- if (tweak != null)
- {
- SetTweak(tweak);
- }
- }
- private void SetKey(ulong[] key)
- {
- if (key.Length != this.blocksizeWords)
- {
- throw new ArgumentException("Threefish key must be same size as block (" + blocksizeWords
- + " words)");
- }
- /*
- * Full subkey schedule is deferred to execution to avoid per cipher overhead (10k for 512,
- * 20k for 1024).
- *
- * Key and tweak word sequences are repeated, and static MOD17/MOD9/MOD5/MOD3 calculations
- * used, to avoid expensive mod computations during cipher operation.
- */
- ulong knw = C_240;
- for (int i = 0; i < blocksizeWords; i++)
- {
- kw[i] = key[i];
- knw = knw ^ kw[i];
- }
- kw[blocksizeWords] = knw;
- Array.Copy(kw, 0, kw, blocksizeWords + 1, blocksizeWords);
- }
- private void SetTweak(ulong[] tweak)
- {
- if (tweak.Length != TWEAK_SIZE_WORDS)
- {
- throw new ArgumentException("Tweak must be " + TWEAK_SIZE_WORDS + " words.");
- }
- /*
- * Tweak schedule partially repeated to avoid mod computations during cipher operation
- */
- t[0] = tweak[0];
- t[1] = tweak[1];
- t[2] = t[0] ^ t[1];
- t[3] = t[0];
- t[4] = t[1];
- }
- public virtual string AlgorithmName
- {
- get { return "Threefish-" + (blocksizeBytes * 8); }
- }
- public virtual int GetBlockSize()
- {
- return blocksizeBytes;
- }
- public virtual int ProcessBlock(byte[] inBytes, int inOff, byte[] outBytes, int outOff)
- {
- Check.DataLength(inBytes, inOff, blocksizeBytes, "input buffer too short");
- Check.OutputLength(outBytes, outOff, blocksizeBytes, "output buffer too short");
- Pack.LE_To_UInt64(inBytes, inOff, currentBlock);
- ProcessBlock(this.currentBlock, this.currentBlock);
- Pack.UInt64_To_LE(currentBlock, outBytes, outOff);
- return blocksizeBytes;
- }
- #if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER || UNITY_2021_2_OR_NEWER
- public virtual int ProcessBlock(ReadOnlySpan<byte> input, Span<byte> output)
- {
- Check.DataLength(input, blocksizeBytes, "input buffer too short");
- Check.OutputLength(output, blocksizeBytes, "output buffer too short");
- Pack.LE_To_UInt64(input, currentBlock);
- ProcessBlock(this.currentBlock, this.currentBlock);
- Pack.UInt64_To_LE(currentBlock, output);
- return blocksizeBytes;
- }
- #endif
- /// <summary>
- /// Process a block of data represented as 64 bit words.
- /// </summary>
- /// <returns>the number of 8 byte words processed (which will be the same as the block size).</returns>
- /// <param name="inWords">a block sized buffer of words to process.</param>
- /// <param name="outWords">a block sized buffer of words to receive the output of the operation.</param>
- /// <exception cref="DataLengthException">if either the input or output is not block sized</exception>
- /// <exception cref="InvalidOperationException">if this engine is not initialised</exception>
- internal int ProcessBlock(ulong[] inWords, ulong[] outWords)
- {
- if (kw[blocksizeWords] == 0)
- {
- throw new InvalidOperationException("Threefish engine not initialised");
- }
- if (inWords.Length != blocksizeWords)
- throw new DataLengthException("input buffer too short");
- if (outWords.Length != blocksizeWords)
- throw new OutputLengthException("output buffer too short");
- if (forEncryption)
- {
- cipher.EncryptBlock(inWords, outWords);
- }
- else
- {
- cipher.DecryptBlock(inWords, outWords);
- }
- return blocksizeWords;
- }
- /**
- * Rotate left + xor part of the mix operation.
- */
- private static ulong RotlXor(ulong x, int n, ulong xor)
- {
- return ((x << n) | (x >> (64 - n))) ^ xor;
- }
- /**
- * Rotate xor + rotate right part of the unmix operation.
- */
- private static ulong XorRotr(ulong x, int n, ulong xor)
- {
- ulong xored = x ^ xor;
- return (xored >> n) | (xored << (64 - n));
- }
- private abstract class ThreefishCipher
- {
- /**
- * The extended + repeated tweak words
- */
- protected readonly ulong[] t;
- /**
- * The extended + repeated key words
- */
- protected readonly ulong[] kw;
- protected ThreefishCipher(ulong[] kw, ulong[] t)
- {
- this.kw = kw;
- this.t = t;
- }
- internal abstract void EncryptBlock(ulong[] block, ulong[] outWords);
- internal abstract void DecryptBlock(ulong[] block, ulong[] outWords);
- }
- private sealed class Threefish256Cipher
- : ThreefishCipher
- {
- /**
- * Mix rotation constants defined in Skein 1.3 specification
- */
- private const int ROTATION_0_0 = 14, ROTATION_0_1 = 16;
- private const int ROTATION_1_0 = 52, ROTATION_1_1 = 57;
- private const int ROTATION_2_0 = 23, ROTATION_2_1 = 40;
- private const int ROTATION_3_0 = 5, ROTATION_3_1 = 37;
- private const int ROTATION_4_0 = 25, ROTATION_4_1 = 33;
- private const int ROTATION_5_0 = 46, ROTATION_5_1 = 12;
- private const int ROTATION_6_0 = 58, ROTATION_6_1 = 22;
- private const int ROTATION_7_0 = 32, ROTATION_7_1 = 32;
- public Threefish256Cipher(ulong[] kw, ulong[] t)
- : base(kw, t)
- {
- }
- internal override void EncryptBlock(ulong[] block, ulong[] outWords)
- {
- ulong[] kw = this.kw;
- ulong[] t = this.t;
- int[] mod5 = MOD5;
- int[] mod3 = MOD3;
- /* Help the JIT avoid index bounds checks */
- if (kw.Length != 9)
- {
- throw new ArgumentException();
- }
- if (t.Length != 5)
- {
- throw new ArgumentException();
- }
- /*
- * Read 4 words of plaintext data, not using arrays for cipher state
- */
- ulong b0 = block[0];
- ulong b1 = block[1];
- ulong b2 = block[2];
- ulong b3 = block[3];
- /*
- * First subkey injection.
- */
- b0 += kw[0];
- b1 += kw[1] + t[0];
- b2 += kw[2] + t[1];
- b3 += kw[3];
- /*
- * Rounds loop, unrolled to 8 rounds per iteration.
- *
- * Unrolling to multiples of 4 avoids the mod 4 check for key injection, and allows
- * inlining of the permutations, which cycle every of 2 rounds (avoiding array
- * index/lookup).
- *
- * Unrolling to multiples of 8 avoids the mod 8 rotation constant lookup, and allows
- * inlining constant rotation values (avoiding array index/lookup).
- */
- for (int d = 1; d < (ROUNDS_256 / 4); d += 2)
- {
- int dm5 = mod5[d];
- int dm3 = mod3[d];
- /*
- * 4 rounds of mix and permute.
- *
- * Permute schedule has a 2 round cycle, so permutes are inlined in the mix
- * operations in each 4 round block.
- */
- b1 = RotlXor(b1, ROTATION_0_0, b0 += b1);
- b3 = RotlXor(b3, ROTATION_0_1, b2 += b3);
- b3 = RotlXor(b3, ROTATION_1_0, b0 += b3);
- b1 = RotlXor(b1, ROTATION_1_1, b2 += b1);
- b1 = RotlXor(b1, ROTATION_2_0, b0 += b1);
- b3 = RotlXor(b3, ROTATION_2_1, b2 += b3);
- b3 = RotlXor(b3, ROTATION_3_0, b0 += b3);
- b1 = RotlXor(b1, ROTATION_3_1, b2 += b1);
- /*
- * Subkey injection for first 4 rounds.
- */
- b0 += kw[dm5];
- b1 += kw[dm5 + 1] + t[dm3];
- b2 += kw[dm5 + 2] + t[dm3 + 1];
- b3 += kw[dm5 + 3] + (uint)d;
- /*
- * 4 more rounds of mix/permute
- */
- b1 = RotlXor(b1, ROTATION_4_0, b0 += b1);
- b3 = RotlXor(b3, ROTATION_4_1, b2 += b3);
- b3 = RotlXor(b3, ROTATION_5_0, b0 += b3);
- b1 = RotlXor(b1, ROTATION_5_1, b2 += b1);
- b1 = RotlXor(b1, ROTATION_6_0, b0 += b1);
- b3 = RotlXor(b3, ROTATION_6_1, b2 += b3);
- b3 = RotlXor(b3, ROTATION_7_0, b0 += b3);
- b1 = RotlXor(b1, ROTATION_7_1, b2 += b1);
- /*
- * Subkey injection for next 4 rounds.
- */
- b0 += kw[dm5 + 1];
- b1 += kw[dm5 + 2] + t[dm3 + 1];
- b2 += kw[dm5 + 3] + t[dm3 + 2];
- b3 += kw[dm5 + 4] + (uint)d + 1;
- }
- /*
- * Output cipher state.
- */
- outWords[0] = b0;
- outWords[1] = b1;
- outWords[2] = b2;
- outWords[3] = b3;
- }
- internal override void DecryptBlock(ulong[] block, ulong[] state)
- {
- ulong[] kw = this.kw;
- ulong[] t = this.t;
- int[] mod5 = MOD5;
- int[] mod3 = MOD3;
- /* Help the JIT avoid index bounds checks */
- if (kw.Length != 9)
- {
- throw new ArgumentException();
- }
- if (t.Length != 5)
- {
- throw new ArgumentException();
- }
- ulong b0 = block[0];
- ulong b1 = block[1];
- ulong b2 = block[2];
- ulong b3 = block[3];
- for (int d = (ROUNDS_256 / 4) - 1; d >= 1; d -= 2)
- {
- int dm5 = mod5[d];
- int dm3 = mod3[d];
- /* Reverse key injection for second 4 rounds */
- b0 -= kw[dm5 + 1];
- b1 -= kw[dm5 + 2] + t[dm3 + 1];
- b2 -= kw[dm5 + 3] + t[dm3 + 2];
- b3 -= kw[dm5 + 4] + (uint)d + 1;
- /* Reverse second 4 mix/permute rounds */
- b3 = XorRotr(b3, ROTATION_7_0, b0);
- b0 -= b3;
- b1 = XorRotr(b1, ROTATION_7_1, b2);
- b2 -= b1;
- b1 = XorRotr(b1, ROTATION_6_0, b0);
- b0 -= b1;
- b3 = XorRotr(b3, ROTATION_6_1, b2);
- b2 -= b3;
- b3 = XorRotr(b3, ROTATION_5_0, b0);
- b0 -= b3;
- b1 = XorRotr(b1, ROTATION_5_1, b2);
- b2 -= b1;
- b1 = XorRotr(b1, ROTATION_4_0, b0);
- b0 -= b1;
- b3 = XorRotr(b3, ROTATION_4_1, b2);
- b2 -= b3;
- /* Reverse key injection for first 4 rounds */
- b0 -= kw[dm5];
- b1 -= kw[dm5 + 1] + t[dm3];
- b2 -= kw[dm5 + 2] + t[dm3 + 1];
- b3 -= kw[dm5 + 3] + (uint)d;
- /* Reverse first 4 mix/permute rounds */
- b3 = XorRotr(b3, ROTATION_3_0, b0);
- b0 -= b3;
- b1 = XorRotr(b1, ROTATION_3_1, b2);
- b2 -= b1;
- b1 = XorRotr(b1, ROTATION_2_0, b0);
- b0 -= b1;
- b3 = XorRotr(b3, ROTATION_2_1, b2);
- b2 -= b3;
- b3 = XorRotr(b3, ROTATION_1_0, b0);
- b0 -= b3;
- b1 = XorRotr(b1, ROTATION_1_1, b2);
- b2 -= b1;
- b1 = XorRotr(b1, ROTATION_0_0, b0);
- b0 -= b1;
- b3 = XorRotr(b3, ROTATION_0_1, b2);
- b2 -= b3;
- }
- /*
- * First subkey uninjection.
- */
- b0 -= kw[0];
- b1 -= kw[1] + t[0];
- b2 -= kw[2] + t[1];
- b3 -= kw[3];
- /*
- * Output cipher state.
- */
- state[0] = b0;
- state[1] = b1;
- state[2] = b2;
- state[3] = b3;
- }
- }
- private sealed class Threefish512Cipher
- : ThreefishCipher
- {
- /**
- * Mix rotation constants defined in Skein 1.3 specification
- */
- private const int ROTATION_0_0 = 46, ROTATION_0_1 = 36, ROTATION_0_2 = 19, ROTATION_0_3 = 37;
- private const int ROTATION_1_0 = 33, ROTATION_1_1 = 27, ROTATION_1_2 = 14, ROTATION_1_3 = 42;
- private const int ROTATION_2_0 = 17, ROTATION_2_1 = 49, ROTATION_2_2 = 36, ROTATION_2_3 = 39;
- private const int ROTATION_3_0 = 44, ROTATION_3_1 = 9, ROTATION_3_2 = 54, ROTATION_3_3 = 56;
- private const int ROTATION_4_0 = 39, ROTATION_4_1 = 30, ROTATION_4_2 = 34, ROTATION_4_3 = 24;
- private const int ROTATION_5_0 = 13, ROTATION_5_1 = 50, ROTATION_5_2 = 10, ROTATION_5_3 = 17;
- private const int ROTATION_6_0 = 25, ROTATION_6_1 = 29, ROTATION_6_2 = 39, ROTATION_6_3 = 43;
- private const int ROTATION_7_0 = 8, ROTATION_7_1 = 35, ROTATION_7_2 = 56, ROTATION_7_3 = 22;
- internal Threefish512Cipher(ulong[] kw, ulong[] t)
- : base(kw, t)
- {
- }
- internal override void EncryptBlock(ulong[] block, ulong[] outWords)
- {
- ulong[] kw = this.kw;
- ulong[] t = this.t;
- int[] mod9 = MOD9;
- int[] mod3 = MOD3;
- /* Help the JIT avoid index bounds checks */
- if (kw.Length != 17)
- {
- throw new ArgumentException();
- }
- if (t.Length != 5)
- {
- throw new ArgumentException();
- }
- /*
- * Read 8 words of plaintext data, not using arrays for cipher state
- */
- ulong b0 = block[0];
- ulong b1 = block[1];
- ulong b2 = block[2];
- ulong b3 = block[3];
- ulong b4 = block[4];
- ulong b5 = block[5];
- ulong b6 = block[6];
- ulong b7 = block[7];
- /*
- * First subkey injection.
- */
- b0 += kw[0];
- b1 += kw[1];
- b2 += kw[2];
- b3 += kw[3];
- b4 += kw[4];
- b5 += kw[5] + t[0];
- b6 += kw[6] + t[1];
- b7 += kw[7];
- /*
- * Rounds loop, unrolled to 8 rounds per iteration.
- *
- * Unrolling to multiples of 4 avoids the mod 4 check for key injection, and allows
- * inlining of the permutations, which cycle every of 4 rounds (avoiding array
- * index/lookup).
- *
- * Unrolling to multiples of 8 avoids the mod 8 rotation constant lookup, and allows
- * inlining constant rotation values (avoiding array index/lookup).
- */
- for (int d = 1; d < (ROUNDS_512 / 4); d += 2)
- {
- int dm9 = mod9[d];
- int dm3 = mod3[d];
- /*
- * 4 rounds of mix and permute.
- *
- * Permute schedule has a 4 round cycle, so permutes are inlined in the mix
- * operations in each 4 round block.
- */
- b1 = RotlXor(b1, ROTATION_0_0, b0 += b1);
- b3 = RotlXor(b3, ROTATION_0_1, b2 += b3);
- b5 = RotlXor(b5, ROTATION_0_2, b4 += b5);
- b7 = RotlXor(b7, ROTATION_0_3, b6 += b7);
- b1 = RotlXor(b1, ROTATION_1_0, b2 += b1);
- b7 = RotlXor(b7, ROTATION_1_1, b4 += b7);
- b5 = RotlXor(b5, ROTATION_1_2, b6 += b5);
- b3 = RotlXor(b3, ROTATION_1_3, b0 += b3);
- b1 = RotlXor(b1, ROTATION_2_0, b4 += b1);
- b3 = RotlXor(b3, ROTATION_2_1, b6 += b3);
- b5 = RotlXor(b5, ROTATION_2_2, b0 += b5);
- b7 = RotlXor(b7, ROTATION_2_3, b2 += b7);
- b1 = RotlXor(b1, ROTATION_3_0, b6 += b1);
- b7 = RotlXor(b7, ROTATION_3_1, b0 += b7);
- b5 = RotlXor(b5, ROTATION_3_2, b2 += b5);
- b3 = RotlXor(b3, ROTATION_3_3, b4 += b3);
- /*
- * Subkey injection for first 4 rounds.
- */
- b0 += kw[dm9];
- b1 += kw[dm9 + 1];
- b2 += kw[dm9 + 2];
- b3 += kw[dm9 + 3];
- b4 += kw[dm9 + 4];
- b5 += kw[dm9 + 5] + t[dm3];
- b6 += kw[dm9 + 6] + t[dm3 + 1];
- b7 += kw[dm9 + 7] + (uint)d;
- /*
- * 4 more rounds of mix/permute
- */
- b1 = RotlXor(b1, ROTATION_4_0, b0 += b1);
- b3 = RotlXor(b3, ROTATION_4_1, b2 += b3);
- b5 = RotlXor(b5, ROTATION_4_2, b4 += b5);
- b7 = RotlXor(b7, ROTATION_4_3, b6 += b7);
- b1 = RotlXor(b1, ROTATION_5_0, b2 += b1);
- b7 = RotlXor(b7, ROTATION_5_1, b4 += b7);
- b5 = RotlXor(b5, ROTATION_5_2, b6 += b5);
- b3 = RotlXor(b3, ROTATION_5_3, b0 += b3);
- b1 = RotlXor(b1, ROTATION_6_0, b4 += b1);
- b3 = RotlXor(b3, ROTATION_6_1, b6 += b3);
- b5 = RotlXor(b5, ROTATION_6_2, b0 += b5);
- b7 = RotlXor(b7, ROTATION_6_3, b2 += b7);
- b1 = RotlXor(b1, ROTATION_7_0, b6 += b1);
- b7 = RotlXor(b7, ROTATION_7_1, b0 += b7);
- b5 = RotlXor(b5, ROTATION_7_2, b2 += b5);
- b3 = RotlXor(b3, ROTATION_7_3, b4 += b3);
- /*
- * Subkey injection for next 4 rounds.
- */
- b0 += kw[dm9 + 1];
- b1 += kw[dm9 + 2];
- b2 += kw[dm9 + 3];
- b3 += kw[dm9 + 4];
- b4 += kw[dm9 + 5];
- b5 += kw[dm9 + 6] + t[dm3 + 1];
- b6 += kw[dm9 + 7] + t[dm3 + 2];
- b7 += kw[dm9 + 8] + (uint)d + 1;
- }
- /*
- * Output cipher state.
- */
- outWords[0] = b0;
- outWords[1] = b1;
- outWords[2] = b2;
- outWords[3] = b3;
- outWords[4] = b4;
- outWords[5] = b5;
- outWords[6] = b6;
- outWords[7] = b7;
- }
- internal override void DecryptBlock(ulong[] block, ulong[] state)
- {
- ulong[] kw = this.kw;
- ulong[] t = this.t;
- int[] mod9 = MOD9;
- int[] mod3 = MOD3;
- /* Help the JIT avoid index bounds checks */
- if (kw.Length != 17)
- {
- throw new ArgumentException();
- }
- if (t.Length != 5)
- {
- throw new ArgumentException();
- }
- ulong b0 = block[0];
- ulong b1 = block[1];
- ulong b2 = block[2];
- ulong b3 = block[3];
- ulong b4 = block[4];
- ulong b5 = block[5];
- ulong b6 = block[6];
- ulong b7 = block[7];
- for (int d = (ROUNDS_512 / 4) - 1; d >= 1; d -= 2)
- {
- int dm9 = mod9[d];
- int dm3 = mod3[d];
- /* Reverse key injection for second 4 rounds */
- b0 -= kw[dm9 + 1];
- b1 -= kw[dm9 + 2];
- b2 -= kw[dm9 + 3];
- b3 -= kw[dm9 + 4];
- b4 -= kw[dm9 + 5];
- b5 -= kw[dm9 + 6] + t[dm3 + 1];
- b6 -= kw[dm9 + 7] + t[dm3 + 2];
- b7 -= kw[dm9 + 8] + (uint)d + 1;
- /* Reverse second 4 mix/permute rounds */
- b1 = XorRotr(b1, ROTATION_7_0, b6);
- b6 -= b1;
- b7 = XorRotr(b7, ROTATION_7_1, b0);
- b0 -= b7;
- b5 = XorRotr(b5, ROTATION_7_2, b2);
- b2 -= b5;
- b3 = XorRotr(b3, ROTATION_7_3, b4);
- b4 -= b3;
- b1 = XorRotr(b1, ROTATION_6_0, b4);
- b4 -= b1;
- b3 = XorRotr(b3, ROTATION_6_1, b6);
- b6 -= b3;
- b5 = XorRotr(b5, ROTATION_6_2, b0);
- b0 -= b5;
- b7 = XorRotr(b7, ROTATION_6_3, b2);
- b2 -= b7;
- b1 = XorRotr(b1, ROTATION_5_0, b2);
- b2 -= b1;
- b7 = XorRotr(b7, ROTATION_5_1, b4);
- b4 -= b7;
- b5 = XorRotr(b5, ROTATION_5_2, b6);
- b6 -= b5;
- b3 = XorRotr(b3, ROTATION_5_3, b0);
- b0 -= b3;
- b1 = XorRotr(b1, ROTATION_4_0, b0);
- b0 -= b1;
- b3 = XorRotr(b3, ROTATION_4_1, b2);
- b2 -= b3;
- b5 = XorRotr(b5, ROTATION_4_2, b4);
- b4 -= b5;
- b7 = XorRotr(b7, ROTATION_4_3, b6);
- b6 -= b7;
- /* Reverse key injection for first 4 rounds */
- b0 -= kw[dm9];
- b1 -= kw[dm9 + 1];
- b2 -= kw[dm9 + 2];
- b3 -= kw[dm9 + 3];
- b4 -= kw[dm9 + 4];
- b5 -= kw[dm9 + 5] + t[dm3];
- b6 -= kw[dm9 + 6] + t[dm3 + 1];
- b7 -= kw[dm9 + 7] + (uint)d;
- /* Reverse first 4 mix/permute rounds */
- b1 = XorRotr(b1, ROTATION_3_0, b6);
- b6 -= b1;
- b7 = XorRotr(b7, ROTATION_3_1, b0);
- b0 -= b7;
- b5 = XorRotr(b5, ROTATION_3_2, b2);
- b2 -= b5;
- b3 = XorRotr(b3, ROTATION_3_3, b4);
- b4 -= b3;
- b1 = XorRotr(b1, ROTATION_2_0, b4);
- b4 -= b1;
- b3 = XorRotr(b3, ROTATION_2_1, b6);
- b6 -= b3;
- b5 = XorRotr(b5, ROTATION_2_2, b0);
- b0 -= b5;
- b7 = XorRotr(b7, ROTATION_2_3, b2);
- b2 -= b7;
- b1 = XorRotr(b1, ROTATION_1_0, b2);
- b2 -= b1;
- b7 = XorRotr(b7, ROTATION_1_1, b4);
- b4 -= b7;
- b5 = XorRotr(b5, ROTATION_1_2, b6);
- b6 -= b5;
- b3 = XorRotr(b3, ROTATION_1_3, b0);
- b0 -= b3;
- b1 = XorRotr(b1, ROTATION_0_0, b0);
- b0 -= b1;
- b3 = XorRotr(b3, ROTATION_0_1, b2);
- b2 -= b3;
- b5 = XorRotr(b5, ROTATION_0_2, b4);
- b4 -= b5;
- b7 = XorRotr(b7, ROTATION_0_3, b6);
- b6 -= b7;
- }
- /*
- * First subkey uninjection.
- */
- b0 -= kw[0];
- b1 -= kw[1];
- b2 -= kw[2];
- b3 -= kw[3];
- b4 -= kw[4];
- b5 -= kw[5] + t[0];
- b6 -= kw[6] + t[1];
- b7 -= kw[7];
- /*
- * Output cipher state.
- */
- state[0] = b0;
- state[1] = b1;
- state[2] = b2;
- state[3] = b3;
- state[4] = b4;
- state[5] = b5;
- state[6] = b6;
- state[7] = b7;
- }
- }
- private sealed class Threefish1024Cipher
- : ThreefishCipher
- {
- /**
- * Mix rotation constants defined in Skein 1.3 specification
- */
- private const int ROTATION_0_0 = 24, ROTATION_0_1 = 13, ROTATION_0_2 = 8, ROTATION_0_3 = 47;
- private const int ROTATION_0_4 = 8, ROTATION_0_5 = 17, ROTATION_0_6 = 22, ROTATION_0_7 = 37;
- private const int ROTATION_1_0 = 38, ROTATION_1_1 = 19, ROTATION_1_2 = 10, ROTATION_1_3 = 55;
- private const int ROTATION_1_4 = 49, ROTATION_1_5 = 18, ROTATION_1_6 = 23, ROTATION_1_7 = 52;
- private const int ROTATION_2_0 = 33, ROTATION_2_1 = 4, ROTATION_2_2 = 51, ROTATION_2_3 = 13;
- private const int ROTATION_2_4 = 34, ROTATION_2_5 = 41, ROTATION_2_6 = 59, ROTATION_2_7 = 17;
- private const int ROTATION_3_0 = 5, ROTATION_3_1 = 20, ROTATION_3_2 = 48, ROTATION_3_3 = 41;
- private const int ROTATION_3_4 = 47, ROTATION_3_5 = 28, ROTATION_3_6 = 16, ROTATION_3_7 = 25;
- private const int ROTATION_4_0 = 41, ROTATION_4_1 = 9, ROTATION_4_2 = 37, ROTATION_4_3 = 31;
- private const int ROTATION_4_4 = 12, ROTATION_4_5 = 47, ROTATION_4_6 = 44, ROTATION_4_7 = 30;
- private const int ROTATION_5_0 = 16, ROTATION_5_1 = 34, ROTATION_5_2 = 56, ROTATION_5_3 = 51;
- private const int ROTATION_5_4 = 4, ROTATION_5_5 = 53, ROTATION_5_6 = 42, ROTATION_5_7 = 41;
- private const int ROTATION_6_0 = 31, ROTATION_6_1 = 44, ROTATION_6_2 = 47, ROTATION_6_3 = 46;
- private const int ROTATION_6_4 = 19, ROTATION_6_5 = 42, ROTATION_6_6 = 44, ROTATION_6_7 = 25;
- private const int ROTATION_7_0 = 9, ROTATION_7_1 = 48, ROTATION_7_2 = 35, ROTATION_7_3 = 52;
- private const int ROTATION_7_4 = 23, ROTATION_7_5 = 31, ROTATION_7_6 = 37, ROTATION_7_7 = 20;
- public Threefish1024Cipher(ulong[] kw, ulong[] t)
- : base(kw, t)
- {
- }
- internal override void EncryptBlock(ulong[] block, ulong[] outWords)
- {
- ulong[] kw = this.kw;
- ulong[] t = this.t;
- int[] mod17 = MOD17;
- int[] mod3 = MOD3;
- /* Help the JIT avoid index bounds checks */
- if (kw.Length != 33)
- {
- throw new ArgumentException();
- }
- if (t.Length != 5)
- {
- throw new ArgumentException();
- }
- /*
- * Read 16 words of plaintext data, not using arrays for cipher state
- */
- ulong b0 = block[0];
- ulong b1 = block[1];
- ulong b2 = block[2];
- ulong b3 = block[3];
- ulong b4 = block[4];
- ulong b5 = block[5];
- ulong b6 = block[6];
- ulong b7 = block[7];
- ulong b8 = block[8];
- ulong b9 = block[9];
- ulong b10 = block[10];
- ulong b11 = block[11];
- ulong b12 = block[12];
- ulong b13 = block[13];
- ulong b14 = block[14];
- ulong b15 = block[15];
- /*
- * First subkey injection.
- */
- b0 += kw[0];
- b1 += kw[1];
- b2 += kw[2];
- b3 += kw[3];
- b4 += kw[4];
- b5 += kw[5];
- b6 += kw[6];
- b7 += kw[7];
- b8 += kw[8];
- b9 += kw[9];
- b10 += kw[10];
- b11 += kw[11];
- b12 += kw[12];
- b13 += kw[13] + t[0];
- b14 += kw[14] + t[1];
- b15 += kw[15];
- /*
- * Rounds loop, unrolled to 8 rounds per iteration.
- *
- * Unrolling to multiples of 4 avoids the mod 4 check for key injection, and allows
- * inlining of the permutations, which cycle every of 4 rounds (avoiding array
- * index/lookup).
- *
- * Unrolling to multiples of 8 avoids the mod 8 rotation constant lookup, and allows
- * inlining constant rotation values (avoiding array index/lookup).
- */
- for (int d = 1; d < (ROUNDS_1024 / 4); d += 2)
- {
- int dm17 = mod17[d];
- int dm3 = mod3[d];
- /*
- * 4 rounds of mix and permute.
- *
- * Permute schedule has a 4 round cycle, so permutes are inlined in the mix
- * operations in each 4 round block.
- */
- b1 = RotlXor(b1, ROTATION_0_0, b0 += b1);
- b3 = RotlXor(b3, ROTATION_0_1, b2 += b3);
- b5 = RotlXor(b5, ROTATION_0_2, b4 += b5);
- b7 = RotlXor(b7, ROTATION_0_3, b6 += b7);
- b9 = RotlXor(b9, ROTATION_0_4, b8 += b9);
- b11 = RotlXor(b11, ROTATION_0_5, b10 += b11);
- b13 = RotlXor(b13, ROTATION_0_6, b12 += b13);
- b15 = RotlXor(b15, ROTATION_0_7, b14 += b15);
- b9 = RotlXor(b9, ROTATION_1_0, b0 += b9);
- b13 = RotlXor(b13, ROTATION_1_1, b2 += b13);
- b11 = RotlXor(b11, ROTATION_1_2, b6 += b11);
- b15 = RotlXor(b15, ROTATION_1_3, b4 += b15);
- b7 = RotlXor(b7, ROTATION_1_4, b10 += b7);
- b3 = RotlXor(b3, ROTATION_1_5, b12 += b3);
- b5 = RotlXor(b5, ROTATION_1_6, b14 += b5);
- b1 = RotlXor(b1, ROTATION_1_7, b8 += b1);
- b7 = RotlXor(b7, ROTATION_2_0, b0 += b7);
- b5 = RotlXor(b5, ROTATION_2_1, b2 += b5);
- b3 = RotlXor(b3, ROTATION_2_2, b4 += b3);
- b1 = RotlXor(b1, ROTATION_2_3, b6 += b1);
- b15 = RotlXor(b15, ROTATION_2_4, b12 += b15);
- b13 = RotlXor(b13, ROTATION_2_5, b14 += b13);
- b11 = RotlXor(b11, ROTATION_2_6, b8 += b11);
- b9 = RotlXor(b9, ROTATION_2_7, b10 += b9);
- b15 = RotlXor(b15, ROTATION_3_0, b0 += b15);
- b11 = RotlXor(b11, ROTATION_3_1, b2 += b11);
- b13 = RotlXor(b13, ROTATION_3_2, b6 += b13);
- b9 = RotlXor(b9, ROTATION_3_3, b4 += b9);
- b1 = RotlXor(b1, ROTATION_3_4, b14 += b1);
- b5 = RotlXor(b5, ROTATION_3_5, b8 += b5);
- b3 = RotlXor(b3, ROTATION_3_6, b10 += b3);
- b7 = RotlXor(b7, ROTATION_3_7, b12 += b7);
- /*
- * Subkey injection for first 4 rounds.
- */
- b0 += kw[dm17];
- b1 += kw[dm17 + 1];
- b2 += kw[dm17 + 2];
- b3 += kw[dm17 + 3];
- b4 += kw[dm17 + 4];
- b5 += kw[dm17 + 5];
- b6 += kw[dm17 + 6];
- b7 += kw[dm17 + 7];
- b8 += kw[dm17 + 8];
- b9 += kw[dm17 + 9];
- b10 += kw[dm17 + 10];
- b11 += kw[dm17 + 11];
- b12 += kw[dm17 + 12];
- b13 += kw[dm17 + 13] + t[dm3];
- b14 += kw[dm17 + 14] + t[dm3 + 1];
- b15 += kw[dm17 + 15] + (uint)d;
- /*
- * 4 more rounds of mix/permute
- */
- b1 = RotlXor(b1, ROTATION_4_0, b0 += b1);
- b3 = RotlXor(b3, ROTATION_4_1, b2 += b3);
- b5 = RotlXor(b5, ROTATION_4_2, b4 += b5);
- b7 = RotlXor(b7, ROTATION_4_3, b6 += b7);
- b9 = RotlXor(b9, ROTATION_4_4, b8 += b9);
- b11 = RotlXor(b11, ROTATION_4_5, b10 += b11);
- b13 = RotlXor(b13, ROTATION_4_6, b12 += b13);
- b15 = RotlXor(b15, ROTATION_4_7, b14 += b15);
- b9 = RotlXor(b9, ROTATION_5_0, b0 += b9);
- b13 = RotlXor(b13, ROTATION_5_1, b2 += b13);
- b11 = RotlXor(b11, ROTATION_5_2, b6 += b11);
- b15 = RotlXor(b15, ROTATION_5_3, b4 += b15);
- b7 = RotlXor(b7, ROTATION_5_4, b10 += b7);
- b3 = RotlXor(b3, ROTATION_5_5, b12 += b3);
- b5 = RotlXor(b5, ROTATION_5_6, b14 += b5);
- b1 = RotlXor(b1, ROTATION_5_7, b8 += b1);
- b7 = RotlXor(b7, ROTATION_6_0, b0 += b7);
- b5 = RotlXor(b5, ROTATION_6_1, b2 += b5);
- b3 = RotlXor(b3, ROTATION_6_2, b4 += b3);
- b1 = RotlXor(b1, ROTATION_6_3, b6 += b1);
- b15 = RotlXor(b15, ROTATION_6_4, b12 += b15);
- b13 = RotlXor(b13, ROTATION_6_5, b14 += b13);
- b11 = RotlXor(b11, ROTATION_6_6, b8 += b11);
- b9 = RotlXor(b9, ROTATION_6_7, b10 += b9);
- b15 = RotlXor(b15, ROTATION_7_0, b0 += b15);
- b11 = RotlXor(b11, ROTATION_7_1, b2 += b11);
- b13 = RotlXor(b13, ROTATION_7_2, b6 += b13);
- b9 = RotlXor(b9, ROTATION_7_3, b4 += b9);
- b1 = RotlXor(b1, ROTATION_7_4, b14 += b1);
- b5 = RotlXor(b5, ROTATION_7_5, b8 += b5);
- b3 = RotlXor(b3, ROTATION_7_6, b10 += b3);
- b7 = RotlXor(b7, ROTATION_7_7, b12 += b7);
- /*
- * Subkey injection for next 4 rounds.
- */
- b0 += kw[dm17 + 1];
- b1 += kw[dm17 + 2];
- b2 += kw[dm17 + 3];
- b3 += kw[dm17 + 4];
- b4 += kw[dm17 + 5];
- b5 += kw[dm17 + 6];
- b6 += kw[dm17 + 7];
- b7 += kw[dm17 + 8];
- b8 += kw[dm17 + 9];
- b9 += kw[dm17 + 10];
- b10 += kw[dm17 + 11];
- b11 += kw[dm17 + 12];
- b12 += kw[dm17 + 13];
- b13 += kw[dm17 + 14] + t[dm3 + 1];
- b14 += kw[dm17 + 15] + t[dm3 + 2];
- b15 += kw[dm17 + 16] + (uint)d + 1;
- }
- /*
- * Output cipher state.
- */
- outWords[0] = b0;
- outWords[1] = b1;
- outWords[2] = b2;
- outWords[3] = b3;
- outWords[4] = b4;
- outWords[5] = b5;
- outWords[6] = b6;
- outWords[7] = b7;
- outWords[8] = b8;
- outWords[9] = b9;
- outWords[10] = b10;
- outWords[11] = b11;
- outWords[12] = b12;
- outWords[13] = b13;
- outWords[14] = b14;
- outWords[15] = b15;
- }
- internal override void DecryptBlock(ulong[] block, ulong[] state)
- {
- ulong[] kw = this.kw;
- ulong[] t = this.t;
- int[] mod17 = MOD17;
- int[] mod3 = MOD3;
- /* Help the JIT avoid index bounds checks */
- if (kw.Length != 33)
- {
- throw new ArgumentException();
- }
- if (t.Length != 5)
- {
- throw new ArgumentException();
- }
- ulong b0 = block[0];
- ulong b1 = block[1];
- ulong b2 = block[2];
- ulong b3 = block[3];
- ulong b4 = block[4];
- ulong b5 = block[5];
- ulong b6 = block[6];
- ulong b7 = block[7];
- ulong b8 = block[8];
- ulong b9 = block[9];
- ulong b10 = block[10];
- ulong b11 = block[11];
- ulong b12 = block[12];
- ulong b13 = block[13];
- ulong b14 = block[14];
- ulong b15 = block[15];
- for (int d = (ROUNDS_1024 / 4) - 1; d >= 1; d -= 2)
- {
- int dm17 = mod17[d];
- int dm3 = mod3[d];
- /* Reverse key injection for second 4 rounds */
- b0 -= kw[dm17 + 1];
- b1 -= kw[dm17 + 2];
- b2 -= kw[dm17 + 3];
- b3 -= kw[dm17 + 4];
- b4 -= kw[dm17 + 5];
- b5 -= kw[dm17 + 6];
- b6 -= kw[dm17 + 7];
- b7 -= kw[dm17 + 8];
- b8 -= kw[dm17 + 9];
- b9 -= kw[dm17 + 10];
- b10 -= kw[dm17 + 11];
- b11 -= kw[dm17 + 12];
- b12 -= kw[dm17 + 13];
- b13 -= kw[dm17 + 14] + t[dm3 + 1];
- b14 -= kw[dm17 + 15] + t[dm3 + 2];
- b15 -= kw[dm17 + 16] + (uint)d + 1;
- /* Reverse second 4 mix/permute rounds */
- b15 = XorRotr(b15, ROTATION_7_0, b0);
- b0 -= b15;
- b11 = XorRotr(b11, ROTATION_7_1, b2);
- b2 -= b11;
- b13 = XorRotr(b13, ROTATION_7_2, b6);
- b6 -= b13;
- b9 = XorRotr(b9, ROTATION_7_3, b4);
- b4 -= b9;
- b1 = XorRotr(b1, ROTATION_7_4, b14);
- b14 -= b1;
- b5 = XorRotr(b5, ROTATION_7_5, b8);
- b8 -= b5;
- b3 = XorRotr(b3, ROTATION_7_6, b10);
- b10 -= b3;
- b7 = XorRotr(b7, ROTATION_7_7, b12);
- b12 -= b7;
- b7 = XorRotr(b7, ROTATION_6_0, b0);
- b0 -= b7;
- b5 = XorRotr(b5, ROTATION_6_1, b2);
- b2 -= b5;
- b3 = XorRotr(b3, ROTATION_6_2, b4);
- b4 -= b3;
- b1 = XorRotr(b1, ROTATION_6_3, b6);
- b6 -= b1;
- b15 = XorRotr(b15, ROTATION_6_4, b12);
- b12 -= b15;
- b13 = XorRotr(b13, ROTATION_6_5, b14);
- b14 -= b13;
- b11 = XorRotr(b11, ROTATION_6_6, b8);
- b8 -= b11;
- b9 = XorRotr(b9, ROTATION_6_7, b10);
- b10 -= b9;
- b9 = XorRotr(b9, ROTATION_5_0, b0);
- b0 -= b9;
- b13 = XorRotr(b13, ROTATION_5_1, b2);
- b2 -= b13;
- b11 = XorRotr(b11, ROTATION_5_2, b6);
- b6 -= b11;
- b15 = XorRotr(b15, ROTATION_5_3, b4);
- b4 -= b15;
- b7 = XorRotr(b7, ROTATION_5_4, b10);
- b10 -= b7;
- b3 = XorRotr(b3, ROTATION_5_5, b12);
- b12 -= b3;
- b5 = XorRotr(b5, ROTATION_5_6, b14);
- b14 -= b5;
- b1 = XorRotr(b1, ROTATION_5_7, b8);
- b8 -= b1;
- b1 = XorRotr(b1, ROTATION_4_0, b0);
- b0 -= b1;
- b3 = XorRotr(b3, ROTATION_4_1, b2);
- b2 -= b3;
- b5 = XorRotr(b5, ROTATION_4_2, b4);
- b4 -= b5;
- b7 = XorRotr(b7, ROTATION_4_3, b6);
- b6 -= b7;
- b9 = XorRotr(b9, ROTATION_4_4, b8);
- b8 -= b9;
- b11 = XorRotr(b11, ROTATION_4_5, b10);
- b10 -= b11;
- b13 = XorRotr(b13, ROTATION_4_6, b12);
- b12 -= b13;
- b15 = XorRotr(b15, ROTATION_4_7, b14);
- b14 -= b15;
- /* Reverse key injection for first 4 rounds */
- b0 -= kw[dm17];
- b1 -= kw[dm17 + 1];
- b2 -= kw[dm17 + 2];
- b3 -= kw[dm17 + 3];
- b4 -= kw[dm17 + 4];
- b5 -= kw[dm17 + 5];
- b6 -= kw[dm17 + 6];
- b7 -= kw[dm17 + 7];
- b8 -= kw[dm17 + 8];
- b9 -= kw[dm17 + 9];
- b10 -= kw[dm17 + 10];
- b11 -= kw[dm17 + 11];
- b12 -= kw[dm17 + 12];
- b13 -= kw[dm17 + 13] + t[dm3];
- b14 -= kw[dm17 + 14] + t[dm3 + 1];
- b15 -= kw[dm17 + 15] + (uint)d;
- /* Reverse first 4 mix/permute rounds */
- b15 = XorRotr(b15, ROTATION_3_0, b0);
- b0 -= b15;
- b11 = XorRotr(b11, ROTATION_3_1, b2);
- b2 -= b11;
- b13 = XorRotr(b13, ROTATION_3_2, b6);
- b6 -= b13;
- b9 = XorRotr(b9, ROTATION_3_3, b4);
- b4 -= b9;
- b1 = XorRotr(b1, ROTATION_3_4, b14);
- b14 -= b1;
- b5 = XorRotr(b5, ROTATION_3_5, b8);
- b8 -= b5;
- b3 = XorRotr(b3, ROTATION_3_6, b10);
- b10 -= b3;
- b7 = XorRotr(b7, ROTATION_3_7, b12);
- b12 -= b7;
- b7 = XorRotr(b7, ROTATION_2_0, b0);
- b0 -= b7;
- b5 = XorRotr(b5, ROTATION_2_1, b2);
- b2 -= b5;
- b3 = XorRotr(b3, ROTATION_2_2, b4);
- b4 -= b3;
- b1 = XorRotr(b1, ROTATION_2_3, b6);
- b6 -= b1;
- b15 = XorRotr(b15, ROTATION_2_4, b12);
- b12 -= b15;
- b13 = XorRotr(b13, ROTATION_2_5, b14);
- b14 -= b13;
- b11 = XorRotr(b11, ROTATION_2_6, b8);
- b8 -= b11;
- b9 = XorRotr(b9, ROTATION_2_7, b10);
- b10 -= b9;
- b9 = XorRotr(b9, ROTATION_1_0, b0);
- b0 -= b9;
- b13 = XorRotr(b13, ROTATION_1_1, b2);
- b2 -= b13;
- b11 = XorRotr(b11, ROTATION_1_2, b6);
- b6 -= b11;
- b15 = XorRotr(b15, ROTATION_1_3, b4);
- b4 -= b15;
- b7 = XorRotr(b7, ROTATION_1_4, b10);
- b10 -= b7;
- b3 = XorRotr(b3, ROTATION_1_5, b12);
- b12 -= b3;
- b5 = XorRotr(b5, ROTATION_1_6, b14);
- b14 -= b5;
- b1 = XorRotr(b1, ROTATION_1_7, b8);
- b8 -= b1;
- b1 = XorRotr(b1, ROTATION_0_0, b0);
- b0 -= b1;
- b3 = XorRotr(b3, ROTATION_0_1, b2);
- b2 -= b3;
- b5 = XorRotr(b5, ROTATION_0_2, b4);
- b4 -= b5;
- b7 = XorRotr(b7, ROTATION_0_3, b6);
- b6 -= b7;
- b9 = XorRotr(b9, ROTATION_0_4, b8);
- b8 -= b9;
- b11 = XorRotr(b11, ROTATION_0_5, b10);
- b10 -= b11;
- b13 = XorRotr(b13, ROTATION_0_6, b12);
- b12 -= b13;
- b15 = XorRotr(b15, ROTATION_0_7, b14);
- b14 -= b15;
- }
- /*
- * First subkey uninjection.
- */
- b0 -= kw[0];
- b1 -= kw[1];
- b2 -= kw[2];
- b3 -= kw[3];
- b4 -= kw[4];
- b5 -= kw[5];
- b6 -= kw[6];
- b7 -= kw[7];
- b8 -= kw[8];
- b9 -= kw[9];
- b10 -= kw[10];
- b11 -= kw[11];
- b12 -= kw[12];
- b13 -= kw[13] + t[0];
- b14 -= kw[14] + t[1];
- b15 -= kw[15];
- /*
- * Output cipher state.
- */
- state[0] = b0;
- state[1] = b1;
- state[2] = b2;
- state[3] = b3;
- state[4] = b4;
- state[5] = b5;
- state[6] = b6;
- state[7] = b7;
- state[8] = b8;
- state[9] = b9;
- state[10] = b10;
- state[11] = b11;
- state[12] = b12;
- state[13] = b13;
- state[14] = b14;
- state[15] = b15;
- }
- }
- }
- }
- #pragma warning restore
- #endif
|