SecT163R1Point.cs 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274
  1. #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
  2. #pragma warning disable
  3. using System;
  4. namespace Best.HTTP.SecureProtocol.Org.BouncyCastle.Math.EC.Custom.Sec
  5. {
  6. internal class SecT163R1Point
  7. : AbstractF2mPoint
  8. {
  9. internal SecT163R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
  10. : base(curve, x, y)
  11. {
  12. }
  13. internal SecT163R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs)
  14. : base(curve, x, y, zs)
  15. {
  16. }
  17. protected override ECPoint Detach()
  18. {
  19. return new SecT163R1Point(null, AffineXCoord, AffineYCoord);
  20. }
  21. public override ECFieldElement YCoord
  22. {
  23. get
  24. {
  25. ECFieldElement X = RawXCoord, L = RawYCoord;
  26. if (this.IsInfinity || X.IsZero)
  27. return L;
  28. // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly
  29. ECFieldElement Y = L.Add(X).Multiply(X);
  30. ECFieldElement Z = RawZCoords[0];
  31. if (!Z.IsOne)
  32. {
  33. Y = Y.Divide(Z);
  34. }
  35. return Y;
  36. }
  37. }
  38. protected internal override bool CompressionYTilde
  39. {
  40. get
  41. {
  42. ECFieldElement X = this.RawXCoord;
  43. if (X.IsZero)
  44. return false;
  45. ECFieldElement Y = this.RawYCoord;
  46. // Y is actually Lambda (X + Y/X) here
  47. return Y.TestBitZero() != X.TestBitZero();
  48. }
  49. }
  50. public override ECPoint Add(ECPoint b)
  51. {
  52. if (this.IsInfinity)
  53. return b;
  54. if (b.IsInfinity)
  55. return this;
  56. ECCurve curve = this.Curve;
  57. ECFieldElement X1 = this.RawXCoord;
  58. ECFieldElement X2 = b.RawXCoord;
  59. if (X1.IsZero)
  60. {
  61. if (X2.IsZero)
  62. return curve.Infinity;
  63. return b.Add(this);
  64. }
  65. ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
  66. ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];
  67. bool Z1IsOne = Z1.IsOne;
  68. ECFieldElement U2 = X2, S2 = L2;
  69. if (!Z1IsOne)
  70. {
  71. U2 = U2.Multiply(Z1);
  72. S2 = S2.Multiply(Z1);
  73. }
  74. bool Z2IsOne = Z2.IsOne;
  75. ECFieldElement U1 = X1, S1 = L1;
  76. if (!Z2IsOne)
  77. {
  78. U1 = U1.Multiply(Z2);
  79. S1 = S1.Multiply(Z2);
  80. }
  81. ECFieldElement A = S1.Add(S2);
  82. ECFieldElement B = U1.Add(U2);
  83. if (B.IsZero)
  84. {
  85. if (A.IsZero)
  86. return Twice();
  87. return curve.Infinity;
  88. }
  89. ECFieldElement X3, L3, Z3;
  90. if (X2.IsZero)
  91. {
  92. // TODO This can probably be optimized quite a bit
  93. ECPoint p = this.Normalize();
  94. X1 = p.XCoord;
  95. ECFieldElement Y1 = p.YCoord;
  96. ECFieldElement Y2 = L2;
  97. ECFieldElement L = Y1.Add(Y2).Divide(X1);
  98. X3 = L.Square().Add(L).Add(X1).Add(curve.A);
  99. if (X3.IsZero)
  100. {
  101. return new SecT163R1Point(curve, X3, curve.B.Sqrt());
  102. }
  103. ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
  104. L3 = Y3.Divide(X3).Add(X3);
  105. Z3 = curve.FromBigInteger(BigInteger.One);
  106. }
  107. else
  108. {
  109. B = B.Square();
  110. ECFieldElement AU1 = A.Multiply(U1);
  111. ECFieldElement AU2 = A.Multiply(U2);
  112. X3 = AU1.Multiply(AU2);
  113. if (X3.IsZero)
  114. {
  115. return new SecT163R1Point(curve, X3, curve.B.Sqrt());
  116. }
  117. ECFieldElement ABZ2 = A.Multiply(B);
  118. if (!Z2IsOne)
  119. {
  120. ABZ2 = ABZ2.Multiply(Z2);
  121. }
  122. L3 = AU2.Add(B).SquarePlusProduct(ABZ2, L1.Add(Z1));
  123. Z3 = ABZ2;
  124. if (!Z1IsOne)
  125. {
  126. Z3 = Z3.Multiply(Z1);
  127. }
  128. }
  129. return new SecT163R1Point(curve, X3, L3, new ECFieldElement[] { Z3 });
  130. }
  131. public override ECPoint Twice()
  132. {
  133. if (this.IsInfinity)
  134. {
  135. return this;
  136. }
  137. ECCurve curve = this.Curve;
  138. ECFieldElement X1 = this.RawXCoord;
  139. if (X1.IsZero)
  140. {
  141. // A point with X == 0 is its own additive inverse
  142. return curve.Infinity;
  143. }
  144. ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
  145. bool Z1IsOne = Z1.IsOne;
  146. ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.Multiply(Z1);
  147. ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square();
  148. ECFieldElement a = curve.A;
  149. ECFieldElement aZ1Sq = Z1IsOne ? a : a.Multiply(Z1Sq);
  150. ECFieldElement T = L1.Square().Add(L1Z1).Add(aZ1Sq);
  151. if (T.IsZero)
  152. {
  153. return new SecT163R1Point(curve, T, curve.B.Sqrt());
  154. }
  155. ECFieldElement X3 = T.Square();
  156. ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq);
  157. ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.Multiply(Z1);
  158. ECFieldElement L3 = X1Z1.SquarePlusProduct(T, L1Z1).Add(X3).Add(Z3);
  159. return new SecT163R1Point(curve, X3, L3, new ECFieldElement[] { Z3 });
  160. }
  161. public override ECPoint TwicePlus(ECPoint b)
  162. {
  163. if (this.IsInfinity)
  164. return b;
  165. if (b.IsInfinity)
  166. return Twice();
  167. ECCurve curve = this.Curve;
  168. ECFieldElement X1 = this.RawXCoord;
  169. if (X1.IsZero)
  170. {
  171. // A point with X == 0 is its own additive inverse
  172. return b;
  173. }
  174. ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0];
  175. if (X2.IsZero || !Z2.IsOne)
  176. {
  177. return Twice().Add(b);
  178. }
  179. ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
  180. ECFieldElement L2 = b.RawYCoord;
  181. ECFieldElement X1Sq = X1.Square();
  182. ECFieldElement L1Sq = L1.Square();
  183. ECFieldElement Z1Sq = Z1.Square();
  184. ECFieldElement L1Z1 = L1.Multiply(Z1);
  185. ECFieldElement T = curve.A.Multiply(Z1Sq).Add(L1Sq).Add(L1Z1);
  186. ECFieldElement L2plus1 = L2.AddOne();
  187. ECFieldElement A = curve.A.Add(L2plus1).Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
  188. ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq);
  189. ECFieldElement B = X2Z1Sq.Add(T).Square();
  190. if (B.IsZero)
  191. {
  192. if (A.IsZero)
  193. return b.Twice();
  194. return curve.Infinity;
  195. }
  196. if (A.IsZero)
  197. {
  198. return new SecT163R1Point(curve, A, curve.B.Sqrt());
  199. }
  200. ECFieldElement X3 = A.Square().Multiply(X2Z1Sq);
  201. ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq);
  202. ECFieldElement L3 = A.Add(B).Square().MultiplyPlusProduct(T, L2plus1, Z3);
  203. return new SecT163R1Point(curve, X3, L3, new ECFieldElement[] { Z3 });
  204. }
  205. public override ECPoint Negate()
  206. {
  207. if (this.IsInfinity)
  208. return this;
  209. ECFieldElement X = this.RawXCoord;
  210. if (X.IsZero)
  211. return this;
  212. // L is actually Lambda (X + Y/X) here
  213. ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0];
  214. return new SecT163R1Point(Curve, X, L.Add(Z), new ECFieldElement[] { Z });
  215. }
  216. }
  217. }
  218. #pragma warning restore
  219. #endif