SecT233K1Point.cs 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286
  1. #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
  2. #pragma warning disable
  3. using System;
  4. namespace Best.HTTP.SecureProtocol.Org.BouncyCastle.Math.EC.Custom.Sec
  5. {
  6. internal class SecT233K1Point
  7. : AbstractF2mPoint
  8. {
  9. internal SecT233K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
  10. : base(curve, x, y)
  11. {
  12. }
  13. internal SecT233K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs)
  14. : base(curve, x, y, zs)
  15. {
  16. }
  17. protected override ECPoint Detach()
  18. {
  19. return new SecT233K1Point(null, this.AffineXCoord, this.AffineYCoord);
  20. }
  21. public override ECFieldElement YCoord
  22. {
  23. get
  24. {
  25. ECFieldElement X = RawXCoord, L = RawYCoord;
  26. if (this.IsInfinity || X.IsZero)
  27. return L;
  28. // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly
  29. ECFieldElement Y = L.Add(X).Multiply(X);
  30. ECFieldElement Z = RawZCoords[0];
  31. if (!Z.IsOne)
  32. {
  33. Y = Y.Divide(Z);
  34. }
  35. return Y;
  36. }
  37. }
  38. protected internal override bool CompressionYTilde
  39. {
  40. get
  41. {
  42. ECFieldElement X = this.RawXCoord;
  43. if (X.IsZero)
  44. return false;
  45. ECFieldElement Y = this.RawYCoord;
  46. // Y is actually Lambda (X + Y/X) here
  47. return Y.TestBitZero() != X.TestBitZero();
  48. }
  49. }
  50. public override ECPoint Add(ECPoint b)
  51. {
  52. if (this.IsInfinity)
  53. return b;
  54. if (b.IsInfinity)
  55. return this;
  56. ECCurve curve = this.Curve;
  57. ECFieldElement X1 = this.RawXCoord;
  58. ECFieldElement X2 = b.RawXCoord;
  59. if (X1.IsZero)
  60. {
  61. if (X2.IsZero)
  62. {
  63. return curve.Infinity;
  64. }
  65. return b.Add(this);
  66. }
  67. ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
  68. ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];
  69. bool Z1IsOne = Z1.IsOne;
  70. ECFieldElement U2 = X2, S2 = L2;
  71. if (!Z1IsOne)
  72. {
  73. U2 = U2.Multiply(Z1);
  74. S2 = S2.Multiply(Z1);
  75. }
  76. bool Z2IsOne = Z2.IsOne;
  77. ECFieldElement U1 = X1, S1 = L1;
  78. if (!Z2IsOne)
  79. {
  80. U1 = U1.Multiply(Z2);
  81. S1 = S1.Multiply(Z2);
  82. }
  83. ECFieldElement A = S1.Add(S2);
  84. ECFieldElement B = U1.Add(U2);
  85. if (B.IsZero)
  86. {
  87. if (A.IsZero)
  88. return Twice();
  89. return curve.Infinity;
  90. }
  91. ECFieldElement X3, L3, Z3;
  92. if (X2.IsZero)
  93. {
  94. // TODO This can probably be optimized quite a bit
  95. ECPoint p = this.Normalize();
  96. X1 = p.XCoord;
  97. ECFieldElement Y1 = p.YCoord;
  98. ECFieldElement Y2 = L2;
  99. ECFieldElement L = Y1.Add(Y2).Divide(X1);
  100. X3 = L.Square().Add(L).Add(X1);
  101. if (X3.IsZero)
  102. {
  103. return new SecT233K1Point(curve, X3, curve.B);
  104. }
  105. ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
  106. L3 = Y3.Divide(X3).Add(X3);
  107. Z3 = curve.FromBigInteger(BigInteger.One);
  108. }
  109. else
  110. {
  111. B = B.Square();
  112. ECFieldElement AU1 = A.Multiply(U1);
  113. ECFieldElement AU2 = A.Multiply(U2);
  114. X3 = AU1.Multiply(AU2);
  115. if (X3.IsZero)
  116. {
  117. return new SecT233K1Point(curve, X3, curve.B);
  118. }
  119. ECFieldElement ABZ2 = A.Multiply(B);
  120. if (!Z2IsOne)
  121. {
  122. ABZ2 = ABZ2.Multiply(Z2);
  123. }
  124. L3 = AU2.Add(B).SquarePlusProduct(ABZ2, L1.Add(Z1));
  125. Z3 = ABZ2;
  126. if (!Z1IsOne)
  127. {
  128. Z3 = Z3.Multiply(Z1);
  129. }
  130. }
  131. return new SecT233K1Point(curve, X3, L3, new ECFieldElement[] { Z3 });
  132. }
  133. public override ECPoint Twice()
  134. {
  135. if (this.IsInfinity)
  136. {
  137. return this;
  138. }
  139. ECCurve curve = this.Curve;
  140. ECFieldElement X1 = this.RawXCoord;
  141. if (X1.IsZero)
  142. {
  143. // A point with X == 0 is its own additive inverse
  144. return curve.Infinity;
  145. }
  146. ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
  147. bool Z1IsOne = Z1.IsOne;
  148. ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square();
  149. ECFieldElement T;
  150. if (Z1IsOne)
  151. {
  152. T = L1.Square().Add(L1);
  153. }
  154. else
  155. {
  156. T = L1.Add(Z1).Multiply(L1);
  157. }
  158. if (T.IsZero)
  159. {
  160. return new SecT233K1Point(curve, T, curve.B);
  161. }
  162. ECFieldElement X3 = T.Square();
  163. ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq);
  164. ECFieldElement t1 = L1.Add(X1).Square();
  165. ECFieldElement t2 = Z1IsOne ? Z1 : Z1Sq.Square();
  166. ECFieldElement L3 = t1.Add(T).Add(Z1Sq).Multiply(t1).Add(t2).Add(X3).Add(Z3);
  167. return new SecT233K1Point(curve, X3, L3, new ECFieldElement[] { Z3 });
  168. }
  169. public override ECPoint TwicePlus(ECPoint b)
  170. {
  171. if (this.IsInfinity)
  172. return b;
  173. if (b.IsInfinity)
  174. return Twice();
  175. ECCurve curve = this.Curve;
  176. ECFieldElement X1 = this.RawXCoord;
  177. if (X1.IsZero)
  178. {
  179. // A point with X == 0 is its own additive inverse
  180. return b;
  181. }
  182. // NOTE: TwicePlus() only optimized for lambda-affine argument
  183. ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0];
  184. if (X2.IsZero || !Z2.IsOne)
  185. {
  186. return Twice().Add(b);
  187. }
  188. ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
  189. ECFieldElement L2 = b.RawYCoord;
  190. ECFieldElement X1Sq = X1.Square();
  191. ECFieldElement L1Sq = L1.Square();
  192. ECFieldElement Z1Sq = Z1.Square();
  193. ECFieldElement L1Z1 = L1.Multiply(Z1);
  194. ECFieldElement T = L1Sq.Add(L1Z1);
  195. ECFieldElement L2plus1 = L2.AddOne();
  196. ECFieldElement A = L2plus1.Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
  197. ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq);
  198. ECFieldElement B = X2Z1Sq.Add(T).Square();
  199. if (B.IsZero)
  200. {
  201. if (A.IsZero)
  202. {
  203. return b.Twice();
  204. }
  205. return curve.Infinity;
  206. }
  207. if (A.IsZero)
  208. {
  209. return new SecT233K1Point(curve, A, curve.B);
  210. }
  211. ECFieldElement X3 = A.Square().Multiply(X2Z1Sq);
  212. ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq);
  213. ECFieldElement L3 = A.Add(B).Square().MultiplyPlusProduct(T, L2plus1, Z3);
  214. return new SecT233K1Point(curve, X3, L3, new ECFieldElement[] { Z3 });
  215. }
  216. public override ECPoint Negate()
  217. {
  218. if (this.IsInfinity)
  219. return this;
  220. ECFieldElement X = this.RawXCoord;
  221. if (X.IsZero)
  222. return this;
  223. // L is actually Lambda (X + Y/X) here
  224. ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0];
  225. return new SecT233K1Point(Curve, X, L.Add(Z), new ECFieldElement[] { Z });
  226. }
  227. }
  228. }
  229. #pragma warning restore
  230. #endif