SecT409Field.cs 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404
  1. #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
  2. #pragma warning disable
  3. using System;
  4. using System.Diagnostics;
  5. #if NETCOREAPP3_0_OR_GREATER
  6. using System.Runtime.Intrinsics;
  7. using System.Runtime.Intrinsics.X86;
  8. #endif
  9. using Best.HTTP.SecureProtocol.Org.BouncyCastle.Math.Raw;
  10. namespace Best.HTTP.SecureProtocol.Org.BouncyCastle.Math.EC.Custom.Sec
  11. {
  12. internal class SecT409Field
  13. {
  14. private const ulong M25 = ulong.MaxValue >> 39;
  15. private const ulong M59 = ulong.MaxValue >> 5;
  16. public static void Add(ulong[] x, ulong[] y, ulong[] z)
  17. {
  18. z[0] = x[0] ^ y[0];
  19. z[1] = x[1] ^ y[1];
  20. z[2] = x[2] ^ y[2];
  21. z[3] = x[3] ^ y[3];
  22. z[4] = x[4] ^ y[4];
  23. z[5] = x[5] ^ y[5];
  24. z[6] = x[6] ^ y[6];
  25. }
  26. public static void AddExt(ulong[] xx, ulong[] yy, ulong[] zz)
  27. {
  28. for (int i = 0; i < 13; ++i)
  29. {
  30. zz[i] = xx[i] ^ yy[i];
  31. }
  32. }
  33. public static void AddOne(ulong[] x, ulong[] z)
  34. {
  35. z[0] = x[0] ^ 1UL;
  36. z[1] = x[1];
  37. z[2] = x[2];
  38. z[3] = x[3];
  39. z[4] = x[4];
  40. z[5] = x[5];
  41. z[6] = x[6];
  42. }
  43. private static void AddTo(ulong[] x, ulong[] z)
  44. {
  45. z[0] ^= x[0];
  46. z[1] ^= x[1];
  47. z[2] ^= x[2];
  48. z[3] ^= x[3];
  49. z[4] ^= x[4];
  50. z[5] ^= x[5];
  51. z[6] ^= x[6];
  52. }
  53. public static ulong[] FromBigInteger(BigInteger x)
  54. {
  55. return Nat.FromBigInteger64(409, x);
  56. }
  57. public static void HalfTrace(ulong[] x, ulong[] z)
  58. {
  59. ulong[] tt = Nat.Create64(13);
  60. Nat448.Copy64(x, z);
  61. for (int i = 1; i < 409; i += 2)
  62. {
  63. ImplSquare(z, tt);
  64. Reduce(tt, z);
  65. ImplSquare(z, tt);
  66. Reduce(tt, z);
  67. AddTo(x, z);
  68. }
  69. }
  70. public static void Invert(ulong[] x, ulong[] z)
  71. {
  72. if (Nat448.IsZero64(x))
  73. throw new InvalidOperationException();
  74. // Itoh-Tsujii inversion with bases { 2, 3 }
  75. ulong[] t0 = Nat448.Create64();
  76. ulong[] t1 = Nat448.Create64();
  77. ulong[] t2 = Nat448.Create64();
  78. Square(x, t0);
  79. // 3 | 408
  80. SquareN(t0, 1, t1);
  81. Multiply(t0, t1, t0);
  82. SquareN(t1, 1, t1);
  83. Multiply(t0, t1, t0);
  84. // 2 | 136
  85. SquareN(t0, 3, t1);
  86. Multiply(t0, t1, t0);
  87. // 2 | 68
  88. SquareN(t0, 6, t1);
  89. Multiply(t0, t1, t0);
  90. // 2 | 34
  91. SquareN(t0, 12, t1);
  92. Multiply(t0, t1, t2);
  93. // ! {2,3} | 17
  94. SquareN(t2, 24, t0);
  95. SquareN(t0, 24, t1);
  96. Multiply(t0, t1, t0);
  97. // 2 | 8
  98. SquareN(t0, 48, t1);
  99. Multiply(t0, t1, t0);
  100. // 2 | 4
  101. SquareN(t0, 96, t1);
  102. Multiply(t0, t1, t0);
  103. // 2 | 2
  104. SquareN(t0, 192, t1);
  105. Multiply(t0, t1, t0);
  106. Multiply(t0, t2, z);
  107. }
  108. public static void Multiply(ulong[] x, ulong[] y, ulong[] z)
  109. {
  110. ulong[] tt = Nat448.CreateExt64();
  111. ImplMultiply(x, y, tt);
  112. Reduce(tt, z);
  113. }
  114. public static void MultiplyAddToExt(ulong[] x, ulong[] y, ulong[] zz)
  115. {
  116. ulong[] tt = Nat448.CreateExt64();
  117. ImplMultiply(x, y, tt);
  118. AddExt(zz, tt, zz);
  119. }
  120. public static void Reduce(ulong[] xx, ulong[] z)
  121. {
  122. ulong x00 = xx[0], x01 = xx[1], x02 = xx[2], x03 = xx[3];
  123. ulong x04 = xx[4], x05 = xx[5], x06 = xx[6], x07 = xx[7];
  124. ulong u = xx[12];
  125. x05 ^= (u << 39);
  126. x06 ^= (u >> 25) ^ (u << 62);
  127. x07 ^= (u >> 2);
  128. u = xx[11];
  129. x04 ^= (u << 39);
  130. x05 ^= (u >> 25) ^ (u << 62);
  131. x06 ^= (u >> 2);
  132. u = xx[10];
  133. x03 ^= (u << 39);
  134. x04 ^= (u >> 25) ^ (u << 62);
  135. x05 ^= (u >> 2);
  136. u = xx[9];
  137. x02 ^= (u << 39);
  138. x03 ^= (u >> 25) ^ (u << 62);
  139. x04 ^= (u >> 2);
  140. u = xx[8];
  141. x01 ^= (u << 39);
  142. x02 ^= (u >> 25) ^ (u << 62);
  143. x03 ^= (u >> 2);
  144. u = x07;
  145. x00 ^= (u << 39);
  146. x01 ^= (u >> 25) ^ (u << 62);
  147. x02 ^= (u >> 2);
  148. ulong t = x06 >> 25;
  149. z[0] = x00 ^ t;
  150. z[1] = x01 ^ (t << 23);
  151. z[2] = x02;
  152. z[3] = x03;
  153. z[4] = x04;
  154. z[5] = x05;
  155. z[6] = x06 & M25;
  156. }
  157. public static void Reduce39(ulong[] z, int zOff)
  158. {
  159. ulong z6 = z[zOff + 6], t = z6 >> 25;
  160. z[zOff ] ^= t;
  161. z[zOff + 1] ^= (t << 23);
  162. z[zOff + 6] = z6 & M25;
  163. }
  164. public static void Sqrt(ulong[] x, ulong[] z)
  165. {
  166. ulong c0 = Interleave.Unshuffle(x[0], x[1], out ulong e0);
  167. ulong c1 = Interleave.Unshuffle(x[2], x[3], out ulong e1);
  168. ulong c2 = Interleave.Unshuffle(x[4], x[5], out ulong e2);
  169. ulong c3 = Interleave.Unshuffle(x[6] , out ulong e3);
  170. z[0] = e0 ^ (c0 << 44);
  171. z[1] = e1 ^ (c1 << 44) ^ (c0 >> 20);
  172. z[2] = e2 ^ (c2 << 44) ^ (c1 >> 20);
  173. z[3] = e3 ^ (c3 << 44) ^ (c2 >> 20) ^ (c0 << 13);
  174. z[4] = (c3 >> 20) ^ (c1 << 13) ^ (c0 >> 51);
  175. z[5] = (c2 << 13) ^ (c1 >> 51);
  176. z[6] = (c3 << 13) ^ (c2 >> 51);
  177. Debug.Assert((c3 >> 51) == 0);
  178. }
  179. public static void Square(ulong[] x, ulong[] z)
  180. {
  181. ulong[] tt = Nat.Create64(13);
  182. ImplSquare(x, tt);
  183. Reduce(tt, z);
  184. }
  185. public static void SquareAddToExt(ulong[] x, ulong[] zz)
  186. {
  187. ulong[] tt = Nat.Create64(13);
  188. ImplSquare(x, tt);
  189. AddExt(zz, tt, zz);
  190. }
  191. public static void SquareN(ulong[] x, int n, ulong[] z)
  192. {
  193. Debug.Assert(n > 0);
  194. ulong[] tt = Nat.Create64(13);
  195. ImplSquare(x, tt);
  196. Reduce(tt, z);
  197. while (--n > 0)
  198. {
  199. ImplSquare(z, tt);
  200. Reduce(tt, z);
  201. }
  202. }
  203. public static uint Trace(ulong[] x)
  204. {
  205. // Non-zero-trace bits: 0
  206. return (uint)(x[0]) & 1U;
  207. }
  208. protected static void ImplCompactExt(ulong[] zz)
  209. {
  210. ulong z00 = zz[ 0], z01 = zz[ 1], z02 = zz[ 2], z03 = zz[ 3], z04 = zz[ 4], z05 = zz[ 5], z06 = zz[ 6];
  211. ulong z07 = zz[ 7], z08 = zz[ 8], z09 = zz[ 9], z10 = zz[10], z11 = zz[11], z12 = zz[12], z13 = zz[13];
  212. zz[ 0] = z00 ^ (z01 << 59);
  213. zz[ 1] = (z01 >> 5) ^ (z02 << 54);
  214. zz[ 2] = (z02 >> 10) ^ (z03 << 49);
  215. zz[ 3] = (z03 >> 15) ^ (z04 << 44);
  216. zz[ 4] = (z04 >> 20) ^ (z05 << 39);
  217. zz[ 5] = (z05 >> 25) ^ (z06 << 34);
  218. zz[ 6] = (z06 >> 30) ^ (z07 << 29);
  219. zz[ 7] = (z07 >> 35) ^ (z08 << 24);
  220. zz[ 8] = (z08 >> 40) ^ (z09 << 19);
  221. zz[ 9] = (z09 >> 45) ^ (z10 << 14);
  222. zz[10] = (z10 >> 50) ^ (z11 << 9);
  223. zz[11] = (z11 >> 55) ^ (z12 << 4)
  224. ^ (z13 << 63);
  225. zz[12] = (z13 >> 1);
  226. //zz[13] = 0;
  227. }
  228. protected static void ImplExpand(ulong[] x, ulong[] z)
  229. {
  230. ulong x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3], x4 = x[4], x5 = x[5], x6 = x[6];
  231. z[0] = x0 & M59;
  232. z[1] = ((x0 >> 59) ^ (x1 << 5)) & M59;
  233. z[2] = ((x1 >> 54) ^ (x2 << 10)) & M59;
  234. z[3] = ((x2 >> 49) ^ (x3 << 15)) & M59;
  235. z[4] = ((x3 >> 44) ^ (x4 << 20)) & M59;
  236. z[5] = ((x4 >> 39) ^ (x5 << 25)) & M59;
  237. z[6] = ((x5 >> 34) ^ (x6 << 30));
  238. }
  239. protected static void ImplMultiply(ulong[] x, ulong[] y, ulong[] zz)
  240. {
  241. ulong[] a = new ulong[7], b = new ulong[7];
  242. ImplExpand(x, a);
  243. ImplExpand(y, b);
  244. ulong[] u = new ulong[8];
  245. for (int i = 0; i < 7; ++i)
  246. {
  247. ImplMulwAcc(u, a[i], b[i], zz, i << 1);
  248. }
  249. ulong v0 = zz[0], v1 = zz[1];
  250. v0 ^= zz[ 2]; zz[1] = v0 ^ v1; v1 ^= zz[ 3];
  251. v0 ^= zz[ 4]; zz[2] = v0 ^ v1; v1 ^= zz[ 5];
  252. v0 ^= zz[ 6]; zz[3] = v0 ^ v1; v1 ^= zz[ 7];
  253. v0 ^= zz[ 8]; zz[4] = v0 ^ v1; v1 ^= zz[ 9];
  254. v0 ^= zz[10]; zz[5] = v0 ^ v1; v1 ^= zz[11];
  255. v0 ^= zz[12]; zz[6] = v0 ^ v1; v1 ^= zz[13];
  256. ulong w = v0 ^ v1;
  257. zz[ 7] = zz[0] ^ w;
  258. zz[ 8] = zz[1] ^ w;
  259. zz[ 9] = zz[2] ^ w;
  260. zz[10] = zz[3] ^ w;
  261. zz[11] = zz[4] ^ w;
  262. zz[12] = zz[5] ^ w;
  263. zz[13] = zz[6] ^ w;
  264. ImplMulwAcc(u, a[0] ^ a[1], b[0] ^ b[1], zz, 1);
  265. ImplMulwAcc(u, a[0] ^ a[2], b[0] ^ b[2], zz, 2);
  266. ImplMulwAcc(u, a[0] ^ a[3], b[0] ^ b[3], zz, 3);
  267. ImplMulwAcc(u, a[1] ^ a[2], b[1] ^ b[2], zz, 3);
  268. ImplMulwAcc(u, a[0] ^ a[4], b[0] ^ b[4], zz, 4);
  269. ImplMulwAcc(u, a[1] ^ a[3], b[1] ^ b[3], zz, 4);
  270. ImplMulwAcc(u, a[0] ^ a[5], b[0] ^ b[5], zz, 5);
  271. ImplMulwAcc(u, a[1] ^ a[4], b[1] ^ b[4], zz, 5);
  272. ImplMulwAcc(u, a[2] ^ a[3], b[2] ^ b[3], zz, 5);
  273. ImplMulwAcc(u, a[0] ^ a[6], b[0] ^ b[6], zz, 6);
  274. ImplMulwAcc(u, a[1] ^ a[5], b[1] ^ b[5], zz, 6);
  275. ImplMulwAcc(u, a[2] ^ a[4], b[2] ^ b[4], zz, 6);
  276. ImplMulwAcc(u, a[1] ^ a[6], b[1] ^ b[6], zz, 7);
  277. ImplMulwAcc(u, a[2] ^ a[5], b[2] ^ b[5], zz, 7);
  278. ImplMulwAcc(u, a[3] ^ a[4], b[3] ^ b[4], zz, 7);
  279. ImplMulwAcc(u, a[2] ^ a[6], b[2] ^ b[6], zz, 8);
  280. ImplMulwAcc(u, a[3] ^ a[5], b[3] ^ b[5], zz, 8);
  281. ImplMulwAcc(u, a[3] ^ a[6], b[3] ^ b[6], zz, 9);
  282. ImplMulwAcc(u, a[4] ^ a[5], b[4] ^ b[5], zz, 9);
  283. ImplMulwAcc(u, a[4] ^ a[6], b[4] ^ b[6], zz, 10);
  284. ImplMulwAcc(u, a[5] ^ a[6], b[5] ^ b[6], zz, 11);
  285. ImplCompactExt(zz);
  286. }
  287. protected static void ImplMulwAcc(ulong[] u, ulong x, ulong y, ulong[] z, int zOff)
  288. {
  289. Debug.Assert(x >> 59 == 0);
  290. Debug.Assert(y >> 59 == 0);
  291. #if NETCOREAPP3_0_OR_GREATER
  292. if (Pclmulqdq.IsSupported)
  293. {
  294. var X = Vector128.CreateScalar(x);
  295. var Y = Vector128.CreateScalar(y);
  296. var Z = Pclmulqdq.CarrylessMultiply(X, Y, 0x00);
  297. ulong z0 = Z.GetElement(0);
  298. ulong z1 = Z.GetElement(1);
  299. z[zOff ] ^= z0 & M59;
  300. z[zOff + 1] ^= (z0 >> 59) ^ (z1 << 5);
  301. return;
  302. }
  303. #endif
  304. //u[0] = 0;
  305. u[1] = y;
  306. u[2] = u[1] << 1;
  307. u[3] = u[2] ^ y;
  308. u[4] = u[2] << 1;
  309. u[5] = u[4] ^ y;
  310. u[6] = u[3] << 1;
  311. u[7] = u[6] ^ y;
  312. uint j = (uint)x;
  313. ulong g, h = 0, l = u[j & 7]
  314. ^ (u[(j >> 3) & 7] << 3);
  315. int k = 54;
  316. do
  317. {
  318. j = (uint)(x >> k);
  319. g = u[j & 7]
  320. ^ u[(j >> 3) & 7] << 3;
  321. l ^= (g << k);
  322. h ^= (g >> -k);
  323. }
  324. while ((k -= 6) > 0);
  325. Debug.Assert(h >> 53 == 0);
  326. z[zOff ] ^= l & M59;
  327. z[zOff + 1] ^= (l >> 59) ^ (h << 5);
  328. }
  329. protected static void ImplSquare(ulong[] x, ulong[] zz)
  330. {
  331. Interleave.Expand64To128(x, 0, 6, zz, 0);
  332. zz[12] = Interleave.Expand32to64((uint)x[6]);
  333. }
  334. }
  335. }
  336. #pragma warning restore
  337. #endif